

IEEE 10BASE-T1S EMC Test Specification for Common Mode Chokes

This EMC measurement specification shall be used as a standardized common scale for EMC evaluation of common mode chokes for 10BASE-T1S applications.

Version	1.1
Date	August 26, 2025
Status	Final
Restriction Level	Public

VERSION AND RESTRICTION HISTORY OF THIS DOCUMENT

VERSION	DESCRIPTION	RESTRICTION LEVEL	DATE
0.1	Initial version	OPEN Members Only	10/18/21
0.2	Alternative measurement method for parasitic capacitance added	OPEN Members Only	02/26/22
0.3	Limit S-Parameter Return loss for $50~\Omega$ reference impedance changed Examples for test circuit boards added Test setup description in section Measurement of parasitic capacitance - LCR meter measurement method changed	OPEN Members Only	08/27/22
0.4	Definition of test board for ESD damage test enhanced Definition of test setup for ESD saturation test enhanced Annex B added for compensation of longer DUT connection cable if used for ESD saturation test	OPEN Members Only	03/11/23
0.5	Marking of previous changes removed Typos corrected	OPEN Members Only	05/04/23
1.0	Shift to final version	Public	08/19/23
1.1	Transfer into new OPEN Template Typos corrected	Public	08/26/25

CHAIR AND VICE CHAIR

CHAIR	NAME	ORGANIZATION
OPEN Alliance TC14 Chair	Samuel Sigfridsson	Volvo Car Corporation
OPEN Alliance TC14 Vice Chair	Patrick Isensee	C&S group GmbH

EDITOR

NAME	ORGANIZATION
Dr. Bernd Körber	Forschungs- und Transferzentrum e.V. an der WHZ

CONTRIBUTORS

NAME	ORGANIZATION
Abhishek Ramanujan	Analog Devices
Felipe Jerez	TDK electronics AG
Jason Chuang	Cyntec Co., Ltd
Jianqing Wang	Nagoya Institute of Technology
OsamiWada	Nagoya Institute of Technology
Takahiro Yamanaka	Murata Electronics Europe B.V.
Yusuke Yano	Nagoya Institute of Technology

Table of Contents

VERSION AND RESTRICTION HISTORY OF THIS DOCUMENT	2
CHAIR AND VICE CHAIR	3
EDITOR	3
CONTRIBUTORS	3
OPEN SPECIFICATION OWNERSHIP AND USAGE RIGHTS	6
RIGHTS AND USAGE RESTRICTIONS SPECIFIC TO OPEN ALLIANCE MEMBERS	6
Rights and Usage Restrictions Specific to Non-members of OPEN Alliance	6
TERMS APPLICABLE TO BOTH MEMBERS AND NON-MEMBERS OF OPEN ALLIANCE	7
Patents, Trademarks, and other Rights:	7
Disclaimers and Limitations of Liability:	7
Compliance with Laws and Regulations:	7
Automotive Applications Only:	8
Right to Withdraw or Modify:	8
INTRODUCTION	9
ABBREVIATION/SYMBOLS	9
1 SCOPE	. 10
2 NORMATIVE REFERENCES	. 10
3 TERMS AND DEFINITIONS	. 10
4 GENERAL	. 10
5 TEST AND MEASUREMENT	. 11
5.1 General definitions	11
5.2 Measurement of parasitic capacitance	11
5.3 S-parameter measurement mixed mode	16
5.4 ESD damage	21

IEEE 10BASE-T1S EMC Test Specification for Common Mode Chokes

5.5 S	aturation test at RF disturbances	25
	.1 Test setup	
	.2 Test procedure and parameters	
	aturation test at ESD	
	.1 Test setup	
5.6	.2 Test procedure and parameters	28
ANNE	X A : RECOMMENDED LIMITS FOR TESTS	31
		0.4
A.1	Parasitic capacitance	31
A.2	S-parameter measurement mixed mode	32
A.3	ESD damage	34
A.4	Saturation test at RF disturbances	34
A.5	Saturation test at ESD	34
ANNE	X B : CORRECTION METHODS FOR USAGE OF DUT CONNECTION CABLE	
	ER THAN 0.1 M FOR TPL MEASUREMENTS	35
LONO	LITTIFICATION IN LITTER GOINE I LINIO	
B.1	Reference time correction procedure	35

OPEN Alliance Specification Copyright Notice and Disclaimer

OPEN SPECIFICATION OWNERSHIP AND USAGE RIGHTS

As between OPEN Alliance and OPEN Alliance Members whose contributions were incorp orated in this OPEN Specification (the "Contributing Members"), the Contributing Members own the worldwide copyrights in and to their given contributions. Other than the Contributing Members' contributions, OPEN Alliance owns the worldwide copyrights in and to compilation of those contributions forming this OPEN Specification. For OPEN Alliance Members (as that term is defined in the OPEN Alliance Bylaws), OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Intellectual Property Rights Policy and the additional applicable terms below. For non-members of OPEN Alliance, OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional applicable terms below. The usage permissions referenced and described here relate only to this OPEN Specification and do not include or cover a right to use any specification published elsewhere and referred to in this OPEN Specification. By using this OPEN Specification, you hereby agree to the following terms and usage restrictions:

RIGHTS AND USAGE RESTRICTIONS SPECIFIC TO OPEN ALLIANCE MEMBERS

FOR OPEN ALLIANCE MEMBERS ONLY: In addition to the usage terms and restrictions granted to Members in the OPEN Alliance Intellectual Property Rights Policy, Members' use of this OPEN Specification is subject this Copyright Notice and Disclaimer. Members of OPEN Alliance have the right to use this OPEN Specification solely (i) during the term of a Member's membership in OPEN Alliance and subject to the Member's continued membership in good standing in OPEN Alliance; (ii) subject to the Member's continued compliance with the OPEN Alliance governance documents, Intellectual Property Rights Policy, and the applicable OPEN Alliance Promoter or Adopter Agreement, as applicable; and (iii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the Member's products and services, but only so long as Member does not distribute, publish, display, or transfer this OPEN Specification to any third party, except as expressly set forth in Section 11 of the OPEN Alliance Intellectual Property Rights Policy. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in Member's products and services, Member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If Member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in Member's products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such Member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, Member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance's prior written consent. All rights not expressly granted to Member in the OPEN Alliance Intellectual Property Rights Policy are reserved;

Rights and Usage Restrictions Specific to Non-members of OPEN Alliance

FOR NON-MEMBERS OF OPEN ALLIANCE ONLY: Use of this OPEN Specification by anyone who is not a Member in good standing of OPEN Alliance is subject to your agreement to the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional terms in this Copyright Notice and Disclaimer. Non-members have the right to use this OPEN Specification solely (i) subject to the non-member's continued compliance with the OPEN Alliance Specification License Agreement; and (ii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the non-member's products and services, but only so long as non-member does not distribute, publish, display, or transfer this OPEN Specification to any

third party, unless and only to the extent expressly set forth in the OPEN Alliance Specification License Agreement. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in non-member's products and services, non-member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If non-member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in non-member's products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such non-member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, non-member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance's prior written consent. All rights not expressly granted to non-member in the OPEN Alliance Specification License Agreement are reserved.

TERMS APPLICABLE TO BOTH MEMBERS AND NON-MEMBERS OF OPEN ALLIANCE

Patents, Trademarks, and other Rights:

OPEN Alliance has received no Patent Disclosure and Licensing Statements related to this OPEN Specification. Therefore, this OPEN Specification contains no specific disclaimer related to third parties that may require a patent license for their Essential Claims. Having said that, the receipt of this OPEN Specification shall not operate as an assignment of or license under any patent, industrial design, trademark, or other rights as may subsist in or be contained in or reproduced in this OPEN Specification; and the implementation of this OPEN Specification could require such a patent license from a third party. You may not use any OPEN Alliance trademarks or logos without OPEN Alliance's prior written consent.

Disclaimers and Limitations of Liability:

THIS OPEN SPECIFICATION IS PROVIDED ON AN "AS IS" BASIS, AND ALL REPRESENTATIONS, WARRANTIES, AND GUARANTEES, EITHER EXPLICIT, IMPLIED, STATUTORY, OR OTHERWISE, ARE EXCLUDED AND DISCLAIMED UNLESS (AND THEN ONLY TO THE EXTENT THEY ARE) MANDATORY UNDER LAW. ACCORDINGLY, OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS OR WARRANTIES OR GUARANTEES WITH REGARD TO THIS OPEN SPECIFICATION OR THE INFORMATION (INCLUDING ANY SOFTWARE) CONTAINED HEREIN. OPEN ALLIANCE AND ALL CONTRIBUTING MEMBERS HEREBY EXPRESSLY DISCLAIM ANY AND ALL SUCH EXPRESS, IMPLIED, STATUTORY, AND ALL OTHER REPRESENTATIONS, WARRANTIES, AND GUARANTEES, INCLUDING WITHOUT LIMITATION ANY AND ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, TITLE, NON-INFRINGEMENT OF OR ABSENCE OF THIRD PARTY RIGHTS, AND/OR VALIDITY OF RIGHTS IN THIS OPEN SPECIFICATION; AND OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS AS TO THE ACCURACY OR COMPLETENESS OF THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN. WITHOUT LIMITING THE FOREGOING, OPEN ALLIANCE AND/OR CONTRIBUTING MEMBERS HAS(VE) NO OBLIGATION WHATSOEVER TO INDEMNIFY OR DEFEND YOU AGAINST CLAIMS RELATED TO INFRINGEMENT OR MISAPPROPRIATION OF INTELLECTUAL PROPERTY RIGHTS. OPEN ALLIANCE AND CONTRIBUTING MEMBERS ARE NOT, AND SHALL NOT BE, LIABLE FOR ANY LOSSES, COSTS, EXPENSES, OR DAMAGES OF ANY KIND WHATSOEVER (INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, AND/OR EXEMPLARY DAMAGES) ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS OPEN SPECIFICATION OR ANY INFORMATION HEREIN. NOTHING IN THIS DOCUMENT OPERATES

Compliance with Laws and Regulations:

OR LIMITED BY OPERATION OF LAW.

NOTHING IN THIS DOCUMENT OBLIGATES OPEN ALLIANCE OR CONTRIBUTING MEMBERS TO PROVIDE YOU WITH SUPPORT FOR, OR RELATED TO, THIS OPEN SPECIFICATION OR ANY IMPLEMENTED PRODUCTS OR SERVICES. NOTHING IN THIS OPEN SPECIFICATION CREATES ANY WARRANTIES OR GUARANTEES, EITHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, REGARDING ANY LAW OR REGULATION. OPEN ALLIANCE AND CONTRIBUTING MEMBERS EXPRESSLY DISCLAIM ALL LIABILITY, INCLUDING WITHOUT LIMITATION, LIABILITY FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE OPEN SPECIFICATION OR INFORMATION CONTAINED HEREIN. YOU ARE SOLELY RESPONSIBLE FOR THE COMPLIANCE OF IMPLEMENTED PRODUCTS AND SERVICES WITH ANY SUCH LAWS AND REGULATIONS, AND FOR OBTAINING ANY AND ALL REQUIRED AUTHORIZATIONS, PERMITS, AND/OR LICENSES FOR IMPLEMENTED PRODUCTS AND SERVICES RELATED TO SUCH LAWS AND REGULATIONS WITHIN THE APPLICABLE JURISDICTIONS.

TO LIMIT OR EXCLUDE ANY LIABILITY FOR FRAUD OR ANY OTHER LIABILITY WHICH IS NOT PERMITTED TO BE EXCLUDED

IF YOU INTEND TO USE THIS OPEN SPECIFICATION, YOU SHOULD CONSULT ALL APPLICABLE LAWS AND REGULATIONS. COMPLIANCE WITH THE PROVISIONS OF THIS OPEN SPECIFICATION DOES NOT CONSTITUTE COMPLIANCE TO ANY APPLICABLE LEGAL OR REGULATORY REQUIREMENTS. IMPLEMENTERS OF THIS OPEN SPECIFICATION ARE SOLELY RESPONSIBLE FOR OBSERVING AND COMPLYING WITH THE APPLICABLE LEGAL AND REGULATORY REQUIREMENTS. WITHOUT LIMITING THE FOREGOING, YOU SHALL NOT USE, RELEASE, TRANSFER, IMPORT, EXPORT, AND/OR RE-EXPORT THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN IN ANY MANNER PROHIBITED UNDER ANY APPLICABLE LAWS AND/OR REGULATIONS, INCLUDING WITHOUT LIMITATION U.S. EXPORT CONTROL LAWS.

Automotive Applications Only:

Without limiting the foregoing disclaimers or limitations of liability in any way, this OPEN Specification was developed for automotive applications only. This OPEN Specification has neither been developed, nor tested for, non-automotive applications.

Right to Withdraw or Modify:

OPEN Alliance reserves the right to (but is not obligated to) withdraw, modify, or replace this OPEN Specification at any time, without notice.

© 2024 OPEN Alliance. This document also contains contents, the copyrights of which are owned by third parties who are OPEN Alliance Contributing Members. Unauthorized Use Strictly Prohibited. All Rights Reserved.

INTRODUCTION

The IEEE 802.3cg standard defines a 10 Mbit/s Ethernet communication over an unshielded single pair of conductors and separate the two systems 10BASE-T1S and 10BASE-T1L. The 10BASE-T1S implementation covers a half duplex communication using a CSMA/CD for point to point channel and the optional functionalities full duplex communication for a point to point channel and a half duplex communication for a so called mixing segment (or multidrop mode) with at least 8 nodes and 25 m length of bus lines. In any case, the bus cable is terminated with the line impedance of 100 Ω at both ends of the channel. As an optional feature to enable a deterministic access time for each bus node in a mixing segment the new access method PLCA is overlaid to the CSMA/CD system.

Due to the high communication rate of 10BASE-T1 and the intended use of unshielded twisted pair cable, a high risk of EMC problems is expected. For this reason, an EMC optimization of all components of the Ethernet physical layer is required.

A CMC is used as part of a 10BASE-T1S MDI interface circuit and has a strong impact to the functional and EMC behavior of the complete system. This EMC measurement specification is focused on evaluation of the CMC characteristics related to high frequency and functional aspects as well as ESD.

ABBREVIATION/SYMBOLS

CDMR	Common to Differential Mode Rejection, common mode single ended measured
СМС	Common Mode Choke
DCMR	Differential to Common Mode Rejection, common mode single ended measured
IL	Insertion Loss
RF	Radio Frequency
RL	Return Loss
S- Parameter	Scattering Parameter
VNA	Vector Network Analyzer
TLP	Transmission Line Pulse

1 SCOPE

This document specifies test and measurement methods for characterization of CMCs intended to be used for Ethernet interfaces for 10BASE-T1S. It contains definitions for test methods, test conditions, performance criteria, test procedures, test setups, test boards and recommended limits and covers

- parasitic capacitance;
- S-parameter measurement mixed mode;
- ESD damage test;
- saturation test at RF disturbances;
- saturation test at ESD.

This document does not cover devices that are intended for use in power over data line applications.

2 NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- [1] IEEE P802.3cg[™]: Physical Layer Specifications and Management Parameters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of Conductors
- [2] IEC 62615, Electrostatic discharge sensitivity testing Transmission line pulse (TLP) Component level
- [3] ISO 10605, Road vehicles Test methods for electrical disturbances from electrostatic discharge

3 TERMS AND DEFINITIONS

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

4 GENERAL

The intention of this document is to evaluate the EMC performance of CMCs intended to use for 10BASE-T1S Ethernet interfaces. The final judgment of the tested device is left to the customer.

5 TEST AND MEASUREMENT

5.1 General definitions

All tests are performed for standard room temperature (23 °C +/- 3 K).

In general, a printed circuit board with RF board-to-coax connectors should be used for all tests. To ensure reliable RF parameters, a test board with at least two layers with enlarged GND reference plane is required. The traces on the test board should be designed as $50 (\pm 5) \Omega$ single ended transmission lines with a length as short as possible. For design of CMC footprint and the definition of minimal distance of CMC housing and CMC terminals to the GND plane the related specification of CMC manufacturer should be used, if not otherwise specified in the specific tests.

The test board design and the method of connecting the CMC with the test board is intended to provide high accuracy and reproducible test results and is with more details described in the respective measurement chapters.

A general electrical drawing with winding and pin definitions of a CMC is shown in Figure 5-1.

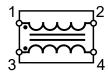


Figure 5-1: General electrical drawing of a CMC

For the measurements described below the CMC line 1 is defined as the CMC winding between pin 1 and pin 2 and line 2 is defined as the winding between pin 3 and pin 4.

5.2 Measurement of parasitic capacitance

5.2.1 VNA measurement method

5.2.1.1 Test setup

The test setup for measuring the parasitic capacitance consists of a VNA in combination with a special test board (adapter test board). The test board is included in the test setup during VNA calibration. The reference points for calibration are defined to the pads of CMC pins 1 and 3 at the test board.

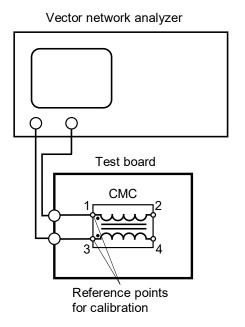


Figure 5-2: Test setup for parasitic capacitance measurement for VNA method

The test equipment definitions are the following:

- vector network analyzer;
- test board parasitic capacitance.

The connecting traces of the test board from RF connectors to CMC pins 1 and 3 should be routed symmetrically at 45° to decrease parasitic inductive coupling. The CMC pins 2 and 4 are unconnected. An example for test board is given in Figure 5-3.

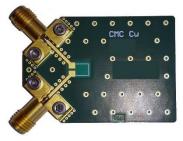


Figure 5-3: Example of test board parasitic capacitance measurement for VNA method, top layer

The test board symmetry and calibration accuracy should be validated with measurement of an open-circuit (without DUT). The remaining open-circuit capacitance should not exceed 500 fF.

5.2.1.2 Test procedure and parameters

The test procedure and parameters are defined in Table 5-6.

Item	Parameter	
Frequency range:	1 MHz to 100 MHz	
S-parameter per single path:	S_{11} , Re + j Im / CMC pin 1 S_{22} , Re + j Im / CMC pin 3 S_{21} , Re + j Im / CMC pin 1 to pin 3 S_{12} , Re + j Im / CMC pin 3 to pin 1	
VNA measurement circuit:	port definitions: logic port 1: physical port 1 / CMC pin 1 logic port 2: physical port 2 / CMC pin 3	
	Logical port 1 VNA port 1 (50 Ω) CMC Logical port 2 VNA port 2 (50 Ω)	
Calculation method:	1. Calculate Y-Parameters from S-Parameters: $ [S] = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \implies [Y] = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} $ Note: All calculations should be performed using raw or linearly interpolated data, to avoid inaccuracy introduced by e.g. spline interpolation or rational fitting. $ 2. \text{Calculate the mean transfer Y-Parameter } Y_T: \\ Y_T = \frac{(Y_{21} + Y_{12})}{2} = \frac{-(S_{12} + S_{21})}{50 \cdot (1 + S_{11} - S_{12} \cdot S_{21} + S_{22} + S_{11} \cdot S_{22})} $ 3. Calculate the parasitic capacitance $C_{\text{para}}(f)$ while extracting the negative imaginary part of $Y_T: C_{para}(f) \approx \frac{Im(-Y_T)}{2\pi f} $ 4. The resulting value $C_{\text{para},\text{max}}$ is the maximum value of $C_{\text{para}}(f)$ in the frequency range from $f = 5$ MHz to $f = 15$ MHz.	

Table 5-1: Test procedure and parameters for parasitic capacitance measurements at CMC using VNA method

The tests should be performed at 10 samples and documented in a diagram with C_{para} (f) and C_{para_max} according to the scheme given in Table 5-2. Recommended limits for evaluation are given in A.1.

Test	Item	Sample
CP1	C _{para_max}	10 samples

Table 5-2: Required parasitic capacitance measurements for CMC

5.2.2 LCR meter or impedance analyzer measurement method

5.2.2.1 Test setup

The test setup for measuring the parasitic capacitance consists of an LCR meter or an impedance analyzer in combination with a special test fixture extension, direct mounted to the measuring device. The reference points for calibration are defined to the electrode plates of the test fixture extension the contact the CMC as shown in Figure 5-4.

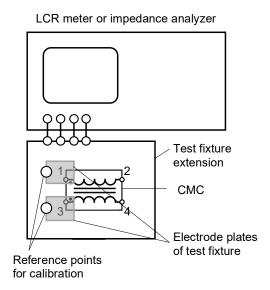


Figure 5-4: Test setup for parasitic capacitance measurement for LCR meter or impedance analyzer method

The test equipment definitions are the following:

- LCR meter or impedance analyzer;
- test fixture extension, direct mounted to the measuring device.

5.2.2.2 Test procedure and parameters

The test procedure and parameters are defined in Table 5-6.

Item	Parameter	
Test frequency:	5 MHz	
LCR meter or impedance analyzer setting:	Parameter: C_{para} Measuring voltage: $\geq 100 \text{ mV}_{rms}$ DC bias voltage: 0 V	
LCR or impedance analyzer measurement circuit:	Terminal Terminal A 2 Parasitic capacitance	

Table 5-3: Test procedure and parameters for parasitic capacitance measurements at CMC using LCR meter or impedance analyzer method

The tests should be performed at 10 samples and documented. Recommended limits for evaluation are given in A.1.

Test	Item	Sample
CP1	C _{para max}	10 samples

Table 5-4: Required parasitic capacitance measurements for CMC

5.3 S-parameter measurement mixed mode

5.3.1 Test setup

The test setup for measuring the mixed mode S-parameters consists of a 4-port VNA in combination with a special test board (adapter test board). The test board is included in the test setup during VNA calibration. The reference points for calibration are defined as the pads of the CMC at the test board.

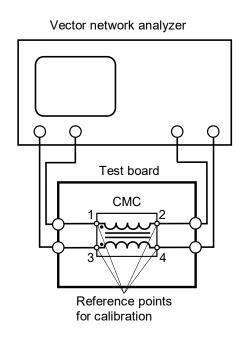


Figure 5-5: Test setup for S-parameter measurements

The test equipment definitions are the following:

- 4-port vector network analyzer;
- 4-port test board S-parameter mixed mode;
- 3-port test board S-parameter mixed mode.

For the *S*-parameter 3-port test board, additional specific requirements are defined. The 3-port test board with soldered RF connectors used for balance measurement should have a very high grade of self-balance. To ensure the test board self-balance characteristic of symmetrical network at logical port 2 (common mode), the traces between the DUT and all resistors (R1, R2 and R3) must be kept highly symmetric and as short as possible. To verify the test board self-balance characteristic, the test parameter and requirements given in Table 5-5 are defined.

Examples for test boards are given in Figure 5-6 and Figure 5-7.

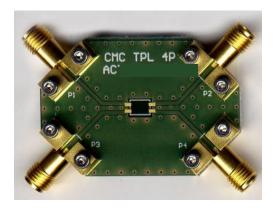


Figure 5-6: Example of test board 4-port S-parameter measurement for CMC, top layer

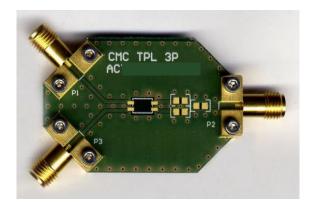


Figure 5-7: Example of test board 3-port S-parameter measurement for CMC, top layer

The reference points for calibration are the pads of the CMC footprint at the test board.

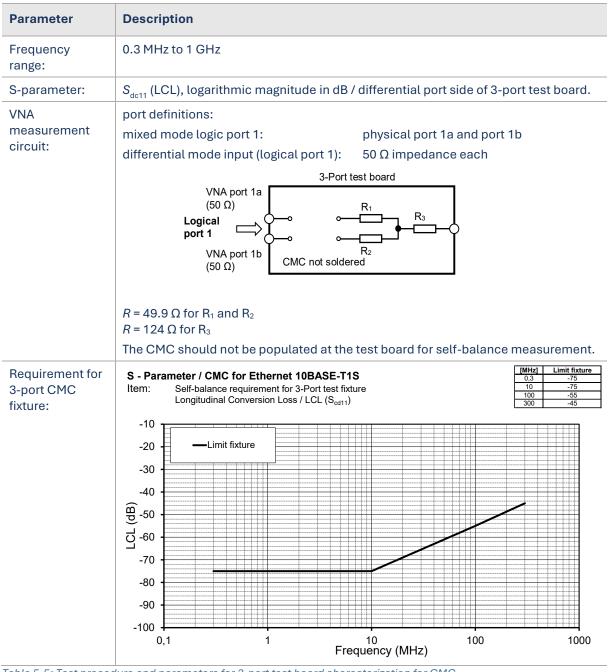


Table 5-5: Test procedure and parameters for 3-port test board characterization for CMC

5.3.2 Test procedure and parameters

The test procedure and parameters are defined in Table 5-6.

Parameter		
0.3 MHz to 1 GHz		
$S_{\rm dd11} (\rm RL), logarithmic magnitude in dB / CMC orientation 1$ $S_{\rm dd22} (\rm RL), logarithmic magnitude in dB / CMC orientation 2$ $S_{\rm dd21} (\rm IL), logarithmic magnitude in dB$ $S_{\rm cc21} (\rm CMR), logarithmic in dB$ 3-port parameters $S_{\rm sd21} (\rm DCMR), logarithmic magnitude in dB / CMC orientation 1$ $S_{\rm sd12} (\rm DCMR), logarithmic magnitude in dB / CMC orientation 2$ $S_{\rm ds21} (\rm CDMR), logarithmic magnitude in dB / CMC orientation 1$ $S_{\rm ds21} (\rm CDMR), logarithmic magnitude in dB / CMC orientation 2$ $For S_{\rm sd12} and S_{\rm ds12} measurement the terminal orientation of the CMC is rotated by 180^{\circ} on the test board.$		
port definitions: mixed mode logic port 1: physical port 1a and port 1b mixed mode logic port 2: physical port 2a and port 2b pin 1 of CMC is placed on logic port 1. 4-port measurements / $S_{\rm dd11}$, $S_{\rm dd22}$, $S_{\rm dd21}$ and $S_{\rm cc21}$: 50 Ω input impedance at each measurement port Test board VNA port 1a (50 Ω) Logical port 1 VNA port 1b (50 Ω) VNA port 2a (50 Ω) Logical port 2 VNA port 2b (50 Ω)		
3-port mixed mode measurements / $S_{\rm sd21}$, $S_{\rm ds21}$, $S_{\rm ds12}$ and $S_{\rm ds12}$: differential mode input (logical port 1): 50 Ω impedance each common mode output (logical port 2): single ended network with 200 Ω impedance $R = (R_1 \mid\mid R_2) + R_3 + R_{\rm VNA\ port\ 2a}$ Test board VNA port 1a VNA port 1b VNA port 1b VNA port 1b Single ended VNA port 2a (50 Ohm) $R = 49.9\ \Omega$ for R_1 and R_2 , $R = 124\ \Omega$ for R_3 The accuracy of resistor values should be \leq 1 %. The difference between		

 Table 5-6: Test procedure and parameters for S-parameter measurements at CMC

The measurements should be performed and documented according to the scheme given in Table 5-7.

Test	S-parameter	Reference impedance differential mode ^a	Reference impedance common mode ^a	Sample
S1a	S _{dd11} (RL)	100 Ω	25 Ω	
S1b ^b	S _{dd11} (RL)	50 Ω	12.5 Ω	
S2a	S _{dd22} (RL)	100 Ω	25 Ω	
S2b ^b	S _{dd22} (RL)	50 Ω	12.5 Ω	
S3	S _{dd21} (IL)	100 Ω	25 Ω	10 comples coch
S4	S _{cc21} (CMR)	100 Ω	25 Ω	10 samples each
S7	S _{sd21} (DCMR)	100 Ω	25 Ω	
S8	S _{sd12} (DCMR)	100 Ω	25 Ω	
S9	S _{ds21} (CDMR)	100 Ω	25 Ω	
S10	S _{ds12} (CDMR)	100 Ω	25 Ω	

for S1 to S4: The definitions are valid for logical ports 1 and 2. for S5 to S10: The definitions are valid for logical port 1. The logical port 2 is defined to 50 Ω for single ended.

Table 5-7: Required S-parameter measurements for CMC

For each test case, the results for all 10 samples should be documented as diagram in the CMC characterization report. Recommended limits for evaluation are given in Annex A.2.

renormalization of measured results for 100 Ω differential mode and 25 Ω common mode impedance condition into 50 Ω differential mode and 12.5 Ω common mode impedance condition

5.4 ESD damage

5.4.1 Test setup

The test setup given in Figure 5-8 is used for testing the ESD robustness of CMC.

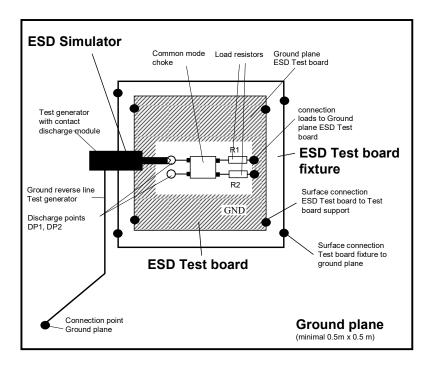


Figure 5-8: Test setup for ESD damage tests at CMC

The test equipment definitions are the following:

- ESD generator (according to ISO 10605, discharge storage capacitor C = 150 pF and discharge resistor R = 330 Ω);
- · ESD test board;
- ground plane;
- test board fixture.

The ground plane with a minimum size of $0.5 \text{ m} \times 0.5 \text{ m}$ is connected to protective earth of the electrical grounding system of the test laboratory. The ESD generator ground return cable is directly connected to this ground plane.

The metallic test fixture positions the ESD test board and directly connects the ESD test board ground plane to the reference ground plane. The ground connection of the test fixture is connected to ground plane with low impedance and low inductance. This surface connection should have a contact area of at least 4 cm². Copper tapes can be used in addition.

For testing the tip of the ESD generator is directly contacted with one of the discharge points DP1 and DP2 of the ESD test board. For this purpose, the discharge points are implemented as rounded vias in the layout of the ESD test board and are directly connected by a trace 15 (±5) mm with the respective pin of the CMC.

For precise evaluation of the damage criteria of the CMC, it is recommended to perform the S-parameter measurements of the CMC, as described in 5.3, before starting any ESD tests using the ESD test board. After performing the ESD test, the S-parameter measurement should be repeated and compared against the valued measured pre-ESD tests. To achieve a high grade of accuracy of required S-parameter measurements for damage evaluation, it is recommended to use the same test board for S-parameter and ESD tests without re-soldering the DUT. For check of damage evaluation criteria (S-parameter), the reference points for calibration are the input of RF connector (SMA) at the test board.

An example for ESD test board is given in Figure 5-9.

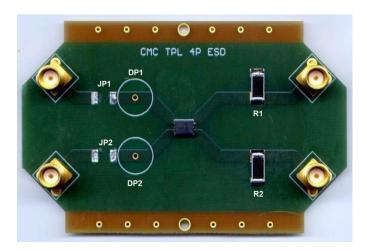


Figure 5-9: Example of ESD test board for CMC, top layer

NOTE While using the ESD test board example given in Figure 5-9 the serial jumpers JP1 and JP2 are left open and the resistors R1 and R2 are populated for ESD tests itself. For S-parameter measurement, the jumpers JP1 and JP2 are closed and the resistors R1 and R2 are not populated. The purpose of using jumpers JP1 and JP2 is to avoid parasitic discharge (ESD spark over event) from discharge points DP1 and DP2 to the ground plane of the ESD test board that can occur at the RF connector (SMA) because of the small dimensions at the connector contacts.

Other test board implementations without using jumpers to disconnect the discharge points from the RF connector terminal can be used as well (e.g. de-soldering the RF connector from ESD test board for ESD test itself). However, in all cases, the avoidance of parasitic discharge from discharge points DP1 and DP2 to the ground plane needs to be checked before testing for unpopulated CMC with a maximum ESD test voltage of +/- 8 kV.

5.4.2 Test procedure and parameters

The required tests and procedure are defined in Table 5-8 and should be done on one sample.

Item	Parameter		
Coupling of ESD:	Direct discharge method according to ISO 10605 (discharge storage capacitor C = 150 pF and discharge resistor R = 330 Ω)		
Test circuit:	Test board $ \frac{\text{CMC}}{\text{DP1}} \underbrace{\frac{\text{CMC}}{\text{DP2}}}_{\text{3}} \underbrace{\frac{R_1}{R_2}}_{\text{2}} \underbrace{\frac{R_1}{R_2}}_{\text{2}} $ All resistors have SMD design 1206 or larger with a maximum tolerance of 2 %. The exact type and manufacturer of the used resistors should be documented in the test report.		
ESD test voltage:	± 8 kV		
Number of discharges:	10 per polarity		
Time between discharges:	5 s		
Damage evaluation criteria:	degrade by more than 0.1 dB from the initial value after performing the tests for S-parameter $S_{\rm dd21}$ for frequencies $f \le 200$ MHz degrade by more than 1 dB from the initial value after performing the tests for S-parameter $S_{\rm dd11}$, $S_{\rm dd22}$ and $S_{\rm cd21}$ for frequencies $f \le 200$ MHz The S-parameter measurements should be done according to 0. Frequency ranges or frequency spots with a level at noise floor or below the related limits of 0 should not be weighted for applying the damage evaluation criteria. For simplification of measurement for check of mode conversion loss the S-parameter $S_{\rm cd21}$ is used instead of $S_{\rm sd21}$. The setup for S-parameter $S_{\rm cd21}$ is same as used for the other required S-parameter. Because of different test circuitry for S-parameter $S_{\rm cd21}$ and $S_{\rm sd21}$ the related limit for S-parameter $S_{\rm cd21}$ is corrected by + 10 dB.		
Test procedure:	 S-parameter reference measurement before ESD test apply ESD discharges at DP1 (± 8 kV, 10 per polarity, 5 s delay) apply ESD discharges at DP2 (± 8 kV, 10 per polarity, 5 s delay) demagnetization of CMC (if needed) S-parameter measurements for evaluation of damage using damage evaluation criteria If a damage occurs at ± 8 kV the test should be repeated with a reduced ESD test voltage to find out the immunity threshold of the DUT. Nevertheless, applying an ESD test voltage of ± 8 kV without damage for DUT is required to pass the test. 		

Table 5-8: Test parameters for ESD damage tests at CMC

The measurements should be performed and documented according to the scheme given in Table 5-9.

Test	Discharge point	Comment	Sample
E1	DP1	Line 1	1 sample
E2	DP2	Line 2	

Table 5-9: Required ESD tests for damage for CMC

The CMC should withstand the ESD discharge without damage according to the damage evaluation criteria. Recommended limits are given in Annex A.3.

5.5 Saturation test at RF disturbances

5.5.1 Test setup

The test setup for measuring the saturation effect at RF immunity tests consists of a 4-port VNA or 2-port VNA in combination with an RF amplifier, RF attenuator and a special test board. The test setup is given in Figure 5-10.

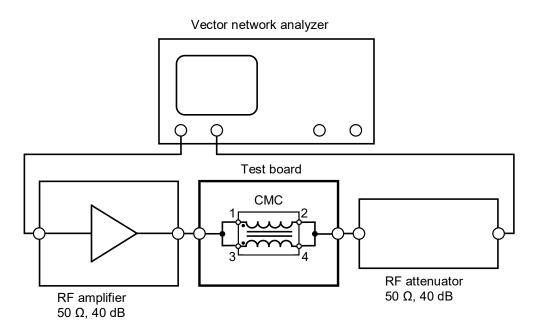


Figure 5-10: Test setup for RF saturation measurements at CMC

The test equipment definitions are the following:

- 4-port or 2-port vector network analyzer;
- RF amplifier (impedance 50 Ω , gain app. 40 dB, PCW \geq 10 W);
- RF attenuator (impedance 50 Ω , attenuation 40 dB), and
- test board RF saturation / S-parameter (2-port).

An example for RF saturation / S-parameter test board is given in Figure 5-11.



Figure 5-11: Example of RF saturation / S-parameter test board for CMC, top layer

5.5.2 Test procedure and parameters

The required test procedure and parameters are defined in Table 5-10.

Item	Parameter		
Frequency range:	1 MHz to 1 GHz		
S-parameter power level:	S ₂₁ (CMR), logarithmic magnitude in dB		
Measurement test circuit:	port definitions: physical port 1 physical port 2 line 1 of CMC is placed on transceiver side (physical port 1) S_{21} measurement: $50~\Omega$ input impedance at each measurement port $ \begin{array}{c} \text{Test board} \\ \text{Single ended} \\ \text{VNA port 1} \\ \text{(50~}\Omega) \end{array} $		
Test power level:	forward power: 24 dBm, 30 dBm, 33 dBm, 36 dBm These test levels are obtained from test level measurement into a 50 Ω load.		
Dwell time per power level:	≥ 60 s		
Evaluation of saturation effect:	maximum deviation of 1 dB from the CMR reference value at 24 dBm for power level 30 dBm maximum deviation of 1 dB from the CMR reference value at 24 dBm for power level 33 dBm above 5 MHz maximum deviation of 1 dB from the CMR reference value at 24 dBm for power level 36 dBm above 7 MHz		
Test procedure:	 define the test equipment settings for test power levels 24 dBm, 30 dBm, 33 dBm and 36 dBm with replacement of DUT by short connections on the test board test with power level 24 dBm for setting the reference value test with power level 30 dBm and evaluation test with power level 33 dBm and evaluation test with power level 36 dBm and evaluation 		

Table 5-10: Test procedure and parameters for RF saturation tests at CMC

The tests should be performed at one sample and documented according to the scheme given in Table 5-11.

Test	S-parameter	Sample
RFS1	S ₂₁ (CMR)	1 sample

Table 5-11: Required RF saturation tests for CMC

The CMC should withstand the RF power saturation test according to the evaluation criteria. Recommended limits are given in Annex A.4.

5.6 Saturation test at ESD

5.6.1 Test setup

The test setup for measuring the saturation effect at ESD tests consists of a TLP test system, digital storage oscilloscope and a special test board. The test setup is given in Figure 5-12.

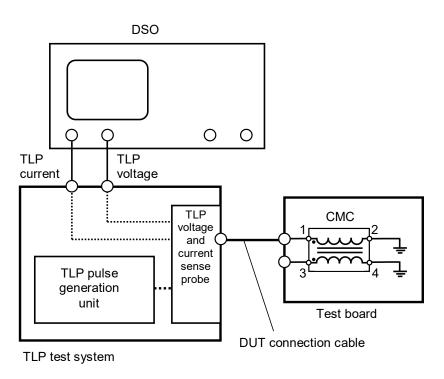


Figure 5-12: Test setup for ESD saturation measurements at CMC

The test equipment definitions are the following:

- TLP test system according to IEC 62615, including TLP generator, current probe and voltage probe;
- DUT connection cable with length ≤ 0.1 m between the test board and the TLP voltage / current sense probes;
- digital storage oscilloscope (DSO, 50 Ω input impedance, minimum 4 GHz analog input bandwidth);
- test board CMC ESD saturation.

NOTE It is recommended to use a DUT connection cable with a maximum length of 0.1 m for lowering the parasitic impact of signal propagation delay to the definition of the reference time for the TLP measuring window t_0 that can cause uncertainty in measuring results. If a DUT connection cable is used with more than 0.1 m length, the signal propagation delay on this cable needs to be considered for definition of the starting time for the TLP measuring window t_0 . For this purpose a procedure is given in Annex B.

The TLP test system (including software for post procession, if available) shall be configured according to the definitions of TLP test system manufacturer. To ensure a correct implementation of all connection cables inside the TLP test system and to the DSO as well as the voltage and current probes, the complete system

needs to be verified using calibration fixtures according to the definitions of IEC 62615 and the TLP test system manufacturer.

An example for CMC ESD saturation test board is given in Figure 5-13.

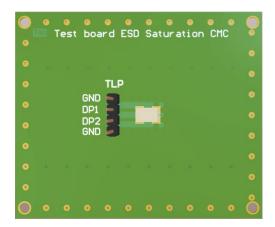


Figure 5-13: Example of ESD saturation test board for CMC, top layer

5.6.2 Test procedure and parameters

The required test procedure and parameters are defined in Table 5-12.

Item	Parameter		
Coupling of ESD:	TLP test system according to IEC 62615		
Test circuit:	Test board CMC DP1 Test board CMC Test board		
TLP test parameter:	TLP pulse rise time: TLP pulse rise time: Measurement time window: Measurement value: Measurement value: Maximum test voltage: Test voltage step size: Maximum test current: TLP Measurement / Defintion of Measurement Time Window TLP Measurement		
Evaluation of saturation effect:	CMC ESD saturation voltage $V_{\text{ESD_br}}$ derived from measured TLP I/V characteristic and limits according to Annex A.5.		

Table 5-12: Test procedure and parameters for ESD saturation tests at CMC

The tests should be performed and documented according to the scheme given in Table 5-13.

Test	Discharge point	Comment	Parameter	Sample
ES1	DP1	Line 1	CMC ESD	1 sample
ES2	DP2	Line 2	saturation voltage	

Table 5-13: Required ESD saturation tests for CMC

For each test case, the TLP I/V characteristic should be recorded and documented in a diagram in the test report. The derived CMC ESD saturation voltage should be below the recommended limits given in Annex A.5.

ANNEX A: RECOMMENDED LIMITS FOR TESTS

A.1 Parasitic capacitance

Based on measurement result of parasitic capacitance $C_{\text{para_max}}$ the CMC shall be classified using the definition of Table A-1.

Class	C _{para_max}
1	13 pF < C _{para_max} ≤ 17 pF
II	10 pF < C _{para_max} ≤ 13 pF
III	$7 pF < C_{para_max} \le 10 pF$
IV	C _{para_max} ≤ 7 pF

Table A-1: Parasitic capacitance classes for CMC

An example of measurement results for typical CMCs using the VNA measurement method is shown in Figure A-1.

Parasitic Capacitance Measurement / CMC for 10BASE-T1S

Item: CP1 - Parasitic Capacitance C_{para}

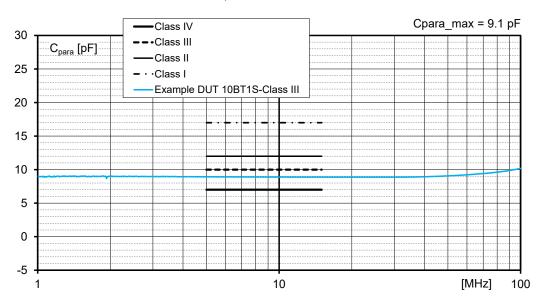


Figure A-1: Example of parasitic capacitance measurement results for CMC

A.2 S-parameter measurement mixed mode

For evaluation of mixed mode S-Parameters the limits given in Figure A-2 to Figure A-5 are recommended. The required limit class depend on the application conditions and will be defined by the customer.

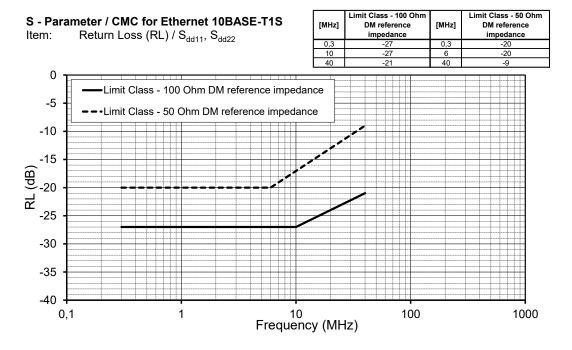


Figure A-2: Recommended characteristics for Sdd11, Sdd22 (RL) for CMC

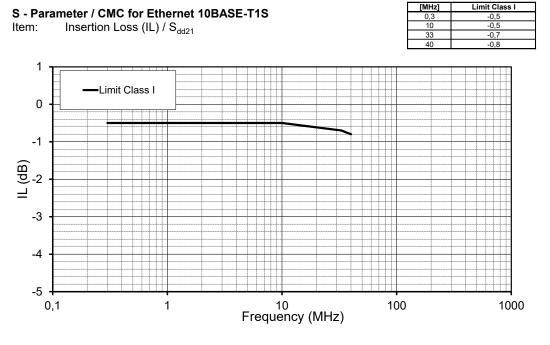


Figure A-3: Recommended characteristics for Sdd21 (IL) for CMC

S-	Parameter /	CMC for	Ethern	et 10BASE-T1	S
				(

Item: Common Mode Rejection (CMR) / S_{cc21}

[MHz]	Limit Class III	[MHz]	Limit Class II	[MHz]	Limit Class I
0,3	-15	0,3	-12	0,3	-9
10	-45	10	-42	10	-39
80	-45	112	-42	160	-39
200	-37	200	-37	200	-37
300	-33.5	300	-33.5	300	-33.5

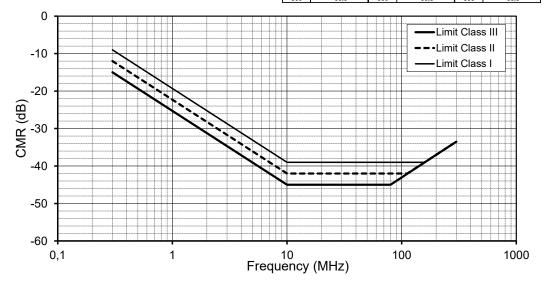


Figure A-4: Recommended characteristics for Scc21 (CMR) for CMC

S - Parameter / CMC for Ethernet 10BASE-T1S

 $\begin{array}{ll} \text{Item:} & \text{Common to Differential Mode conversion Ratio (CDMR) / S_{ds21},} \\ & \text{Differential to Common Mode conversion Ratio (DCMR) / S_{sd21},} \\ & \text{S}_{\text{sd12}} \end{array}$

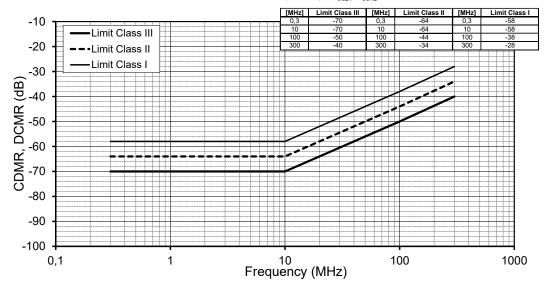


Figure A-5: Recommended characteristics for Ssd21, Ssd12 (DCMR) and Sds21, Sds12 (CDMR) for CMC

A.3 ESD damage

It is recommended that the CMC must withstand the ESD discharge with discharge voltage amplitude of +/- 8 kV without damage.

A.4 Saturation test at RF disturbances

It is recommended that the CMC must withstand the RF power saturation test according to the evaluation criteria up to power amplitude of 36 dBm.

A.5 Saturation test at ESD

Based on measurement result of TLP I/V characteristic the CMC shall be classified using the definition of Table A-2 and Figure A-14.

Class	V _{ESD_br}
1	50 V to 125 V
П	≥ 125 V

Table A-2: ESD saturation voltage classes for CMC

An example of measurement results for typical CMCs is shown in Figure A-14.

TLP Mea	surement / CMC for Ethernet 10BASE-T1S
Item:	TLP I/V characteristic

ESD saturation break down voltage	Limit Class II	Limit Class I
10BASE-T1S	> 125 V	50 V to 125 V

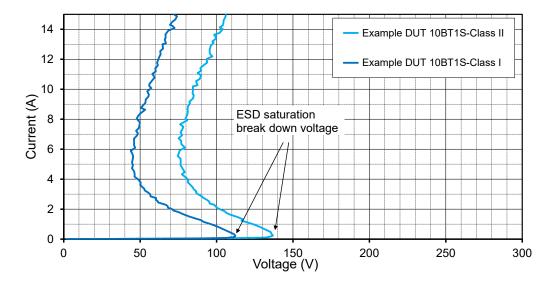


Figure A-14: Example of ESD saturation tests results for CMC

ANNEX B: CORRECTION METHODS FOR USAGE OF DUT CONNECTION CABLE LONGER THAN 0.1 M FOR TPL MEASUREMENTS

B.1 Reference time correction procedure

If a long DUT connection cable is used, the reflected wave observed on the TLP voltage and current sense probes - connected with the oscilloscope - will be delayed from the pulse output timing as shown in Figure B-1, resulting in current and voltage shapes being affected by the cable propagation delay. The time when the pulse arrives at the DUT is defined as the reference time t_0 , instead of the TLP pulse starting time, for the measurement time window to compensate the signal propagation delay on the connection cable.

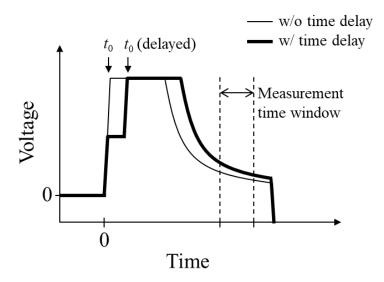


Figure B-1: Parasitic impact of DUT connection cable propagation delay

The reference time t₀ should be corrected in one of the following methods.

- Prepare a time delay in a TLP test system in advance and use it for correction. The adjustments
 derived from this way should be applied to the data within the operating system software or during
 post-processing using spreadsheet or other data analysis software.
- During the error correction open circuit methodology in 6.2.3 of the IEC 62615, determine to from the timing when the rising edge of the voltage reflected wave becomes 10 % of its amplitude as shown in Figure B-2. The adjustment derived from this way should be applied to the data within the operating system software or during post-processing using spreadsheet or other data analysis software.
- During the pulse waveform measurement, trigger at the timing when the rising edge of the voltage reflection wave becomes 10 % of its amplitude and use the trigger timing as t0 as shown in Figure B-3.

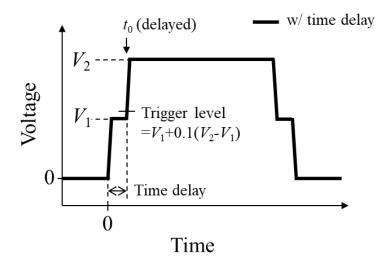


Figure B-2: Correction method b) for reference time to

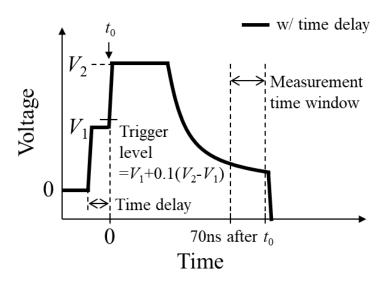


Figure B-3: Correction method c) for reference time t_0