Advanced diagnostic features for 10BASE-T1S automotive Ethernet PHYs

TC14 – advanced PHY features

Author & Company	See Contributing Members	
Title	Advanced diagnostic features for automotive Ethernet PHYs	
Version	1.1	
Date	15 February 2022	
Status	Final	
Restriction Level	Public	

This specification is available at members.opensig.org. Please check this website to ensure you have the latest revision of this document.

OPEN Alliance Specification Copyright Notice and Disclaimer

A. OPEN Specification Ownership and Usage Rights

As between OPEN Alliance and OPEN Alliance Members whose contributions were incorporated in this OPEN Specification (the "Contributing Members"), the Contributing Members own the worldwide copyrights in and to their given contributions. Other than the Contributing Members' contributions, OPEN Alliance owns the worldwide copyrights in and to compilation of those contributions forming this OPEN Specification. For OPEN Alliance Members (as that term is defined in the OPEN Alliance Bylaws), OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Intellectual Property Rights Policy and the additional applicable terms below. For non-members of OPEN Alliance, OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specification) and the additional applicable terms below. The usage permissions referenced and described here relate only to this OPEN Specification and do not include or cover a right to use any specification published elsewhere and referred to in this OPEN Specification. By using this OPEN Specification, you hereby agree to the following terms and usage restrictions:

A.i. <u>Rights and Usage Restrictions Specific to OPEN Alliance Members</u>

FOR OPEN ALLIANCE MEMBERS ONLY: In addition to the usage terms and restrictions granted to Members in the OPEN Alliance Intellectual Property Rights Policy, Members' use of this OPEN Specification is subject this Copyright Notice and Disclaimer. Members of OPEN Alliance have the right to use this OPEN Specification solely (i) during the term of a Member's membership in OPEN Alliance and subject to the Member's continued membership in good standing in OPEN Alliance; (ii) subject to the Member's continued compliance with the OPEN Alliance governance documents, Intellectual Property Rights Policy, and the applicable OPEN Alliance Promoter or Adopter Agreement, as applicable; and (iii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the Member's products and services, but only so long as Member does not distribute, publish, display, or transfer this OPEN Specification to any third party, except as expressly set forth in Section 11 of the OPEN Alliance Intellectual Property Rights Policy. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in Member's products and services, Member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If Member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in Member's products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such Member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, Member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance's prior written consent. All rights not expressly granted to Member in the OPEN Alliance Intellectual Property Rights Policy are reserved;

A.ii. Rights and Usage Restrictions Specific to Non-members of OPEN Alliance FOR NON-MEMBERS OF OPEN ALLIANCE ONLY: Use of this OPEN Specification by anyone who is not a Member in good standing of OPEN Alliance is subject to your agreement to the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional terms in this Copyright Notice and Disclaimer. Nonmembers have the right to use this OPEN Specification solely (i) subject to the non-member's continued compliance with the OPEN Alliance Specification License Agreement; and (ii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the non-member's products and services, but only so long as non-member does not distribute, publish, display, or transfer this OPEN Specification to any third party, unless and only to the extent expressly set forth in the OPEN Alliance Specification License Agreement. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in non-member's products and services, non-member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If non-member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in non-member's products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such non-member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, non-member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance's prior written consent. All rights not expressly granted to non-member in the OPEN Alliance Specification License Agreement are reserved.

B. Terms Applicable to both Members and Non-members of OPEN Alliance

B.i. Patents, Trademarks, and other Rights:

OPEN Alliance has received no Patent Disclosure and Licensing Statements related to this OPEN Specification. Therefore, this OPEN Specification contains no specific disclaimer related to third parties that may require a patent license for their Essential Claims. Having said that, the receipt of this OPEN Specification shall not operate as an assignment of or license under any patent, industrial design, trademark, or other rights as may subsist in or be contained in or reproduced in this OPEN Specification; and the implementation of this OPEN Specification could require such a patent license from a third party. You may not use any OPEN Alliance trademarks or logos without OPEN Alliance's prior written consent.

B.ii. Disclaimers and Limitations of Liability:

THIS OPEN SPECIFICATION IS PROVIDED ON AN "AS IS" BASIS, AND ALL REPRESENTATIONS, WARRANTIES, AND GUARANTEES, EITHER EXPLICIT, IMPLIED, STATUTORY, OR OTHERWISE, ARE EXCLUDED AND DISCLAIMED UNLESS (AND THEN ONLY TO THE EXTENT THEY ARE) MANDATORY UNDER LAW. ACCORDINGLY, OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS OR WARRANTIES OR GUARANTEES WITH REGARD TO THIS OPEN SPECIFICATION OR THE INFORMATION (INCLUDING ANY SOFTWARE) CONTAINED HEREIN. OPEN ALLIANCE AND ALL CONTRIBUTING MEMBERS HEREBY EXPRESSLY DISCLAIM ANY AND ALL SUCH EXPRESS, IMPLIED, STATUTORY, AND ALL OTHER REPRESENTATIONS, WARRANTIES, AND GUARANTEES, INCLUDING WITHOUT LIMITATION ANY AND ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, TITLE, NON-INFRINGEMENT OF OR ABSENCE OF THIRD PARTY RIGHTS, AND/OR VALIDITY OF RIGHTS IN THIS OPEN SPECIFICATION; AND OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS AS TO THE ACCURACY OR COMPLETENESS OF THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN. WITHOUT LIMITING THE FOREGOING, OPEN ALLIANCE AND/OR CONTRIBUTING MEMBERS HAS(VE) NO OBLIGATION WHATSOEVER TO INDEMNIFY OR DEFEND YOU AGAINST CLAIMS RELATED TO INFRINGEMENT OR MISAPPROPRIATION OF INTELLECTUAL PROPERTY RIGHTS.

OPEN ALLIANCE AND CONTRIBUTING MEMBERS ARE NOT, AND SHALL NOT BE, LIABLE FOR ANY LOSSES, COSTS, EXPENSES, OR DAMAGES OF ANY KIND WHATSOEVER (INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, AND/OR EXEMPLARY DAMAGES) ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS OPEN SPECIFICATION OR ANY INFORMATION HEREIN. NOTHING IN THIS DOCUMENT OPERATES TO LIMIT OR EXCLUDE ANY LIABILITY FOR FRAUD OR ANY OTHER LIABILITY WHICH IS NOT PERMITTED TO BE EXCLUDED OR LIMITED BY OPERATION OF LAW.

B.iii. Compliance with Laws and Regulations:

NOTHING IN THIS DOCUMENT OBLIGATES OPEN ALLIANCE OR CONTRIBUTING MEMBERS TO PROVIDE YOU WITH SUPPORT FOR, OR RELATED TO, THIS OPEN SPECIFICATION OR ANY IMPLEMENTED PRODUCTS OR SERVICES. NOTHING IN THIS OPEN SPECIFICATION CREATES ANY WARRANTIES OR GUARANTEES, EITHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, REGARDING ANY LAW OR REGULATION. OPEN ALLIANCE AND CONTRIBUTING MEMBERS EXPRESSLY DISCLAIM ALL LIABILITY, INCLUDING WITHOUT LIMITATION, LIABILITY FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE OPEN SPECIFICATION OR INFORMATION CONTAINED HEREIN. YOU ARE SOLELY RESPONSIBLE FOR THE COMPLIANCE OF IMPLEMENTED PRODUCTS AND SERVICES WITH ANY SUCH LAWS AND REGULATIONS, AND FOR OBTAINING ANY AND ALL REQUIRED AUTHORIZATIONS, PERMITS, AND/OR LICENSES FOR IMPLEMENTED PRODUCTS AND SERVICES RELATED TO SUCH LAWS AND REGULATIONS WITHIN THE APPLICABLE JURISDICTIONS.

IF YOU INTEND TO USE THIS OPEN SPECIFICATION, YOU SHOULD CONSULT ALL APPLICABLE LAWS AND REGULATIONS. COMPLIANCE WITH THE PROVISIONS OF THIS OPEN SPECIFICATION DOES NOT CONSTITUTE COMPLIANCE TO ANY APPLICABLE LEGAL OR REGULATORY REQUIREMENTS. IMPLEMENTERS OF THIS OPEN SPECIFICATION ARE SOLELY RESPONSIBLE FOR OBSERVING AND COMPLYING WITH THE APPLICABLE LEGAL AND REGULATORY REQUIREMENTS. WITHOUT LIMITING THE FOREGOING, YOU SHALL NOT USE, RELEASE, TRANSFER, IMPORT, EXPORT, AND/OR RE-EXPORT THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN IN ANY MANNER PROHIBITED UNDER ANY APPLICABLE LAWS AND/OR REGULATIONS, INCLUDING WITHOUT LIMITATION U.S. EXPORT CONTROL LAWS. **B.iv.** <u>Automotive Applications Only</u>: Without limiting the foregoing disclaimers or limitations of liability in any way, this OPEN Specification was developed for automotive applications only. This OPEN Specification has neither been developed, nor tested for, non-automotive applications.

B.v. Right to Withdraw or Modify:

OPEN Alliance reserves the right to (but is not obligated to) withdraw, modify, or replace this OPEN Specification at any time, without notice.

© 2022 OPEN Alliance. This document also contains contents, the copyrights of which are owned by third parties who are OPEN Alliance Contributing Members. Unauthorized Use Strictly Prohibited. All Rights Reserved.

Version Control of Document

Version	Author	Description	Date
0.1	Thomas Lindner	First Draft Version	27 Jan. 2020
		1 st - 4 th Review of Draft 0.1 (SQI proposals)	01 April; 29 April;
			13 May; 27 May
		5 th Review of Draft 0.1 (PLCA topics)	17 June 2020
		6 th Review of Draft 0.1 (PLCA topics)	01 July 2020
		7 th Review of Draft 0.1 (SQI; HDD)	15 July 2020
		8 th Review of Draft 0.1 (Termination Status; PLCA)	22 July 2020
		9 th Review of Draft 0.1 (Termination Status; PLCA)	26 Aug. 2020
		10 th Review of Draft 0.1 (Termination Status; PLCA)	23 Sept. 2020
		11 th – 14 th Review no change	07 Oct.; 21 Oct.;
			11 Nov.; 25 Nov.
		15 th Review of Draft 0.1 (including PLCA proposal	14 Jan. 2021
		from IIm)	20.1
		from Tim)	28 Jan. 2021
		17 th Review no change	18 Febr. 2021
		18 th Review of Draft 0.1 (update PLCA)	04 March 2021
		19 th Review no change	18 March 2021
		20 th Review of Draft 0.1 (update SQI; add SQITOID)	08 April 2021
		21 st no change	22 April 2021
		22 nd update of SQI and SQITOID	06 May 2021
0.2	Thomas Lindner	23 rd update of SQI (3 level); remove BET until further evaluation results are available; update abbreviation; preparing for final review at sub working group.	20 May 2021
0.3	Thomas Lindner	ner 24 th update. Include feedback of the sub working group members. Version to be forwarded to the OPEN Steering Committee for review.	
0.31	Thomas Lindner	1 st intermediate stage with evaluated TC14 review results	08 July 2021
0.32	Thomas Lindner	2 nd intermediate stage with evaluated TC14 review results	22 July 2021
1.0	Thomas Lindner	ier Final version 28 Oct. 2021	
1.1	Thomas Lindner	Updated copyright and disclaimer. Changed Restriction Level to Public Finalized	15 Feb. 2022

Restriction level history of Document

Version	Restriction Level	Description	Date
0.1	OPEN Technical Members Only	Internal Draft	27 Jan. 2020
0.2	OPEN Technical Members Only	Version for final review at sub	20 May 2020
		working group	
0.3	OPEN Technical Members Only	Version to be forwarded to the OPEN	10 June 2021
		Steering Committee for review	
1.0	Open Technical Members Only	Final Version	28 Oct. 2021
1.1	Public	Final	15 Feb. 2022

Contributing Members

Thomas Lindner [BMW] Piergiorgio Beruto [Canova Tech] Tim Baggett [Microchip] Clemens de Haas [NXP]

Contents

Int	roduct	tion	2
Ab	breviat	ition/Symbols	2
1	Scop	pe	3
2	Norr	mative references	3
3	Term	ns and Definitions	3
4	Over	rview	5
5	Adva	anced PHY features	6
!	5.1	Dynamic Channel Quality	6
	5.1.1	1 SQI Transmit Opportunity ID (DCQ.TOID)	6
	5.1.2	2 SQI Estimate Value (DCQ.SQI)	6
!	5.2	Harness Defect Detection (HDD)	9
	5.2.1	1 OPEN and SHORT detection (OS)	9
!	5.3	PLCA diagnostic (PLCAD)	10
	5.3.1	1 PLCA Beacon Received Before Transmit Opportunity (PLCAD.BCNBFTO)	10
	5.3.2	2 PLCA Unexpected Beacon (PLCAD.UNEXPB)	11
	5.3.3	3 PLCA Receive in Assigned Transmit Opportunity (PLCAD.RXINTO)	11

Introduction

This specification describes advanced features of a 10BASE-T1S automotive Ethernet PHY (often also called transceiver), e.g. for diagnostic purposes for automotive Ethernet PHYs.

Abbreviation/Symbols

AWG noise	Added White Gaussian noise
BCNBFTO	PLCA Beacon Received before Transmit Opportunity
BER	Bit Error Rate
CRC	Cyclic Redundancy Check
DCQ	Dynamic Channel Quality
ED	Energy Detect
HDD	Harness defect detection
MDI	Medium Dependent Interface
OSD	OPEN/SHORT detection
PHY	PHY is a Physical layer interface device, often called transceiver
PLCAD	Physical Layer Collision Avoidance Diagnostic
RXINTO	Packet Received in in Assigned Transmit Opportunity
SNR	Signal Noise Ratio
SQI	Signal Quality Index
TOID	Transmit Opportunity ID
UNEXPB	PLCA Unexpected Beacon received

1 Scope

The objective of this document is to provide a standard set of Advanced PHY features for 10BASE-T1S implementations.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- [1] IEEE 802.3cg Task Force, "IEEE P802.3cg[™] 2019, Draft Standard for Ethernet Amendment 5: Physical Layer Specifications and Management Parameters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of Conductors.
- [2] IEEE Std 802.3[™] 2018, IEEE Standard for Ethernet.
- [3] OPEN Alliance 10BASE-T1S Transceiver Interface.

3 Terms and Definitions

For the purposes of this document, the terms and definitions given in [1], [2], and [3] apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>http://www.electropedia.org/</u>
- Node term definition

End Node	A node that is at either end of a mixing segment. There are no other nodes	
	between the End Node and the 100Ω edge termination. The End Node may	
	ontain the 100 Ω edge termination.	
Drop Node	Any node that is located between the two end nodes	
Coordinator	This is the node configured as aPLCALocalNodeID=0 that is responsible for the	
	periodic transmission of the BEACON and configuring the number of transmit	
	opportunities between each BEACON.	
Follower	Followers are any nodes configured as aPLCALocalNodeID=1254. They	
	synchronize their transmit opportunity counter with the reception of the	
	periodic BEACON transmitted by the coordinator	
Head Node	This is the highest-level application node on the mixing segment. It typically	
	implements a switch or gateway access to the core network beyond the bus	
	segment.	

Note: It is expected that each segment includes two end nodes, one coordinator and one head node.

4 **Overview**

10BASE-T1S automotive Ethernet transceivers (PHY or every PHY port of a switch) shall offer the information specified below for diagnostic purposes.

group	group name	parameter	parameter name	Description	mandatory /optional	remarks
DCQ	Dynamic channel quality	TOID	SQI Transmit Opportunity ID	The SQI value is determined for only a specific transmitting node as identified by the PLCA transmit opportunity as configured in TOID	m/o	3)
		SQI	Signal Quality Index	A classification of the signal quality at least in 3 stages. (green, yellow, red).	m/o	1), 3)
HDD	Harness defect detection	OS	OPEN/SHORT Detection	Cable-Harness errors (short circuit or open line) shall be detected.	m/o	3), 4)
PLCAD	PLCA diagnostic	BCNBFTO	PLCA Beacon Received Before Transmit Opportunity	The PLCA Beacon Received Before Transmit Opportunity (BCNBFTO) status indicates the possibility of multiple coordinator nodes on the mixing segment, or a coordinator node incorrectly configured with a node count smaller than the number of nodes on the mixing segment.	m	6)
		UNEXPB	PLCA Unexpected Beacon	The Unexpected Beacon (UNEXPB) status indicates the existence of another coordinator on the mixing segment.	m	5)
		RXINTO	PLCA Receive in Assigned Transmit Opportunity	The Receive in Assigned Transmit Opportunity (RXINTO) status bit indicates the existence of another node on the mixing segment assigned with a duplicate ID	m	

Table 1: Overview of required PHY parameters to be stored and provided via Register Fields.

Remarks to Table 1:

- 1) The SQI levels, at least 3, should correlate to according SNR values at the PHY input and may represent corresponding bit error rates (in the case of an interference model with white Gaussian noise).
- 2) All of the above registers can be reset.
- 3) Mandatory for head node, optional for other nodes.
- 4) Diagnostic function is only available in special "diagnostic" mode, not on the fly.
- 5) Only for PLCA Coordinator
- 6) Only for PLCA Follower

5 Advanced PHY features

5.1 Dynamic Channel Quality

Dynamic channel quality includes the SQI value.

5.1.1 SQI Transmit Opportunity ID (DCQ.TOID) Mandatory for head node, optional for other nodes

The SQI value (at least 3 levels), specified in 5.1.2 is determined for only a specific PLCA transmit opportunity as configured in DCQ.TOID. Multidrop mixing segments operating with PLCA enabled allow for the determination of a SQI value for each PHY transmit opportunity. Point-to-point segments need not have PLCA enabled, in which case the SQI may be computed over all received packets.

Register Field	DCQ.TOID
Name	Signal Quality Index Transmit Opportunity ID
size[bits]	8

Field value	Explanation
0x00	Compute SQI over packets received in PLCA transmit opportunity 0
0x01	Compute SQI over packets received in PLCA transmit opportunity 1
0x02	Compute SQI over packets received in PLCA transmit opportunity 2
0xFF	Compute SQI over all received packets. (Used for point-to-point or non-PLCA
	segments.)

Table 2: Definition of DCQ.TOID.

5.1.2 SQI Estimate Value (DCQ.SQI)

Mandatory for head node, optional for other nodes

The SQI value of at least three levels shall be stored in a register. For implementations with less than 8 levels, the levels shall be equally spaced within the 3-bit SQI value field.

Register Field	DCQ.SQI
Name	Signal Quality Index (current SQI value)
size[bits]	3

Field value	Explanation	Explanation
0x0	SQI=0 (red, worst value, not acceptable)	SQI=0 (worst value)
0x1		SQI=1
0x2		SQI=2
0x3	SQI=3 (yellow, still acceptable working)	SQI=3
0x4		SQI=4
0x5		SQI=5
0x6		SQI=6
0x7	SQI=7 (green, best value, normal working)	SQI=7 (best value)

Table 3: Definition of DCQ.SQI (mandatory at least 3 levels)

The following features of the SQI value are mandatory:

- The indicated signal quality should monotonically increase /decrease with noise level.
- The datasheet shall indicate at which level a BER $< 10^{-10}$ (better than 10^{-10}) is achieved.

The bit error rates to be expected in the case of white noise as interference signal are shown in the tables as well for information purposes.

some a cossing.			
SQI with 3	*) noise margin @MDI - AWG noise,	recommended BER for AWG noise model	
levels.SQI	30MHz (informative)	(informative)	
value			
(3 levels)			
SQI=0	noise margin < ED threshold	BER>10 ⁻¹⁰	
(red)			
SQI=1	noise margin < ED threshold	10 ⁻¹² <ber<10<sup>-10</ber<10<sup>	
(yellow)			
SQI=2	noise margin ≥ ED threshold	BER<10 ⁻¹²	
(green)			

Correlation SQI to RX/ED threshold crossing:

Table 4: Recommended correlation from SQI (3 levels) to SNR under AWG assumption.

*) TX, RX, and ED. Further details are specified in [3].

• ED is an Energy Detect that is asserted when MDI input is between a crossing threshold

• RX is output from bit comparator

Figure 1: Illustration of the diagnostic principle.

Correlation SQI to SNR for SQI > 3 levels (open to the implementer) Example: SQI with 8 levels

SQI value	SNR value @MDI - AWG noise, 80MHz	recommended BER for AWG noise model
(8 levels)	(informative)	(informative)
SQI=0	<12dB	
SQI=1	12dB= <snr<14db< td=""><td>BER>10⁻¹⁰</td></snr<14db<>	BER>10 ⁻¹⁰
SQI=2	14dB= <snr<16db< td=""><td></td></snr<16db<>	
SQI=3	16dB= <snr<17db< td=""><td></td></snr<17db<>	
SQI=4	17dB= <snr<18db< td=""><td> 10</td></snr<18db<>	10
SQI=5	19dB= <snr<21db< td=""><td>BER<10-10</td></snr<21db<>	BER<10-10
SQI=6	21dB= <snr<23db< td=""><td></td></snr<23db<>	
SQI=7	23dB= <snr< td=""><td></td></snr<>	

Table 5: Recommended correlation from SQI (8 levels) to SNR under AWG assumption.

5.2 Harness Defect Detection (HDD)

5.2.1 OPEN and SHORT detection (OS)

Mandatory for head node, optional for other nodes

There shall be a possibility to detect harness defects. This can either be done during normal operation (as long as possible) or in a specific host-triggered diagnostic mode. With this functionality a PHY shall reliably detect the following error situations as long as the channel is properly terminated:

- OPEN of one bus wire
- OPEN of both bus wires
- SHORT of both conductors (to ground or supply line)
- SHORT between both bus wires
- (OPTIONAL) SHORT of one conductor (to ground or supply line)*

(OPEN = open circuit, SHORT = short circuit)

It is not necessary to distinguish all of the above error situations individually.

Overview of failure types

Figure 2: Overview of mandatory harness defects to be detected.

It is mandatory to detect all these failures from the head-node when all the other drop-nodes are not transmitting any signal. Optionally these failures may also detected from each drop-node.

It could be easier to apply this harness failures detection in a kind of diagnostic mode. The system implementer should design the system to ensure that the other nodes on the segment also enter a kind of passive mode to avoid disturbing the testing signals to be transmitted by the node performing the diagnostic.

*REMARK: The condition of a short circuit of one bus wire to GND or V_{bat} is not reliably detectable with today's technology. The detection of a short circuit of one wire to GND or V_{bat} is therefore an optional feature. If communication is occurring, this may only be identified by higher application software layers due to decreased signal quality. An indication for such a failure may be a reduced SQI or increased sporadic errors.

one bus wire connected to GND or V_{bat}

Figure 3: Overview of optional harness defect to be detected.

Table is showing the Bus Failure Matrix, indicating which combinations of failures and environmental conditions are mandatory to detect and which combinations are optional.

Bus Failure Matrix	Head-Node	Drop-Node
cable OK	mandatory	optional
Both bus wires OPEN	mandatory	optional
Bus wires SHORT	mandatory	optional
One bus wire OPEN	mandatory	optional
both bus wires SHORT to GND/V _{bat}	mandatory	optional
one bus wires SHORT to GND/V _{bat}	optional	optional

Table 6: Bus failure matrix.

5.3 PLCA diagnostic (PLCAD)

5.3.1 PLCA Beacon Received Before Transmit Opportunity (PLCAD.BCNBFTO) Mandatory only for PLCA Follower

Register Field	PLCAD.BCNBFTO
Name	PLCA Beacon Received Before Transmit Opportunity
size[bits]	1

Field Value	Description
0x0	No Error
0x1	PLCA Follower Received a Beacon before its assigned transmit opportunity
Table 7: Definition of	f PLCA Diagnostic Beacon Received Before Transmit Opportunity (PLCAD.BCNBFTO) Register Field

The PLCA Beacon Received before Transmit Opportunity (BCNBFTO) status bit reads as a '1' when the PLCA cycle is completed before the assigned transmit opportunity occurred. This condition indicates the possibility of multiple coordinator nodes on the mixing segment, or a coordinator node incorrectly configured with a node count smaller than the number of nodes on the mixing segment.

The Beacon Received before Transmit Opportunity status bit shall be cleared by an intentional write action of the host.

5.3.2 PLCA Unexpected Beacon (PLCAD.UNEXPB) Mandatory only for PLCA Coordinator

Register Field	PLCAD.UNEXPB
Name	PLCA Unexpected Beacon
size[bits]	1

Field Value	Description
0x0	No error
0x1	PLCA Controller received a Beacon it did not send

Table 8: Definition of PLCA Diagnostic Unexpected Beacon (PLCAD.UNEXP) Register Field

The Unexpected Beacon (UNEXPB) status bit reads as a '1' when the controller node received a Beacon it did not transmit. This condition indicates the existence of another coordinator on the mixing segment.

The Unexpected Beacon status bit shall be cleared by an intentional action of the host.

5.3.3 PLCA Receive in Assigned Transmit Opportunity (PLCAD.RXINTO) Mandatory for PLCA Coordinator and for PLCA Follower

Register Field	PLCAD.RXINTO
Name	PLCA Receive in Assigned Transmit Opportunity
size[bits]	1

Field Value	Explanation
0x0	No error
0x1	PHY detected the beginning of a packet in its assigned transmit opportunity

Table 9: Definition of PLCA Diagnostic Receive in Assigned Transmit Opportunity (PLCAD.RXINTO) Register Field

The Receive in Assigned Transmit Opportunity (RXINTO) status bit reads as a '1'when the PHY asserts RXDV at the beginning of a packet in its assigned transmit opportunity. This condition indicates the existence of another node on the mixing segment assigned with a duplicate node ID.

The Receive in Assigned Transmit Opportunity status bit shall be cleared by an intentional write action of the host.