10BASE-T1S PLCA
Management Registers
TC14 – MDIO registers for PLCA

Author & Company Piergiorgio Beruto (Canova Tech)
Title PLCA Management Registers
Version 1.2
Date 29/08/22
Status Final
Restriction Level Public

This specification is available at members.opensig.org. Please check this website to ensure you have the latest revision of this document.
Version Control of Document

<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Piergiorgio Beruto</td>
<td>First Version</td>
<td>29/05/19</td>
</tr>
<tr>
<td>1.1</td>
<td>Piergiorgio Beruto</td>
<td>Review</td>
<td>06/06/19</td>
</tr>
<tr>
<td>1.2</td>
<td>Piergiorgio Beruto</td>
<td>Update TO_TIMER default value</td>
<td>18/03/22</td>
</tr>
</tbody>
</table>

Restriction level history of Document

<table>
<thead>
<tr>
<th>Version</th>
<th>Restriction Level</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>OPEN Technical Members Only</td>
<td>Technical Members</td>
<td>29/05/19</td>
</tr>
<tr>
<td>1.1</td>
<td>OPEN Technical Members Only</td>
<td>Technical Members</td>
<td>06/06/19</td>
</tr>
<tr>
<td>1.2</td>
<td>Public</td>
<td>Technical Members</td>
<td>29/08/22</td>
</tr>
</tbody>
</table>
OPEN Alliance Specification Copyright Notice and Disclaimer

A. OPEN Specification Ownership and Usage Rights
As between OPEN Alliance and OPEN Alliance Members whose contributions were incorporated in this OPEN Specification (the “Contributing Members”), the Contributing Members own the worldwide copyrights in and to their given contributions. Other than the Contributing Members’ contributions, OPEN Alliance owns the worldwide copyrights in and to compilation of those contributions forming this OPEN Specification. For OPEN Alliance Members (as that term is defined in the OPEN Alliance Bylaws), OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Intellectual Property Rights Policy and the additional applicable terms below. For non-members of OPEN Alliance, OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional applicable terms below. The usage permissions referenced and described here relate only to this OPEN Specification and do not include or cover a right to use any specification published elsewhere and referred to in this OPEN Specification. By using this OPEN Specification, you hereby agree to the following terms and usage restrictions:

A.i. Rights and Usage Restrictions Specific to OPEN Alliance Members
FOR OPEN ALLIANCE MEMBERS ONLY: In addition to the usage terms and restrictions granted to Members in the OPEN Alliance Intellectual Property Rights Policy, Members’ use of this OPEN Specification is subject this Copyright Notice and Disclaimer. Members of OPEN Alliance have the right to use this OPEN Specification solely (i) during the term of a Member’s membership in OPEN Alliance and subject to the Member’s continued membership in good standing in OPEN Alliance; (ii) subject to the Member’s continued compliance with the OPEN Alliance governance documents, Intellectual Property Rights Policy, and the applicable OPEN Alliance Promoter or Adopter Agreement, as applicable; and (iii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the Member’s products and services, but only so long as Member does not distribute, publish, display, or transfer this OPEN Specification to any third party, except as expressly set forth in Section 11 of the OPEN Alliance Intellectual Property Rights Policy. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in Member’s products and services, Member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If Member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in Member’s products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such Member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, Member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance’s prior written consent. All rights not expressly granted to Member in the OPEN Alliance Intellectual Property Rights Policy are reserved;
A.ii. Rights and Usage Restrictions Specific to Non-members of OPEN Alliance

FOR NON-MEMBERS OF OPEN ALLIANCE ONLY: Use of this OPEN Specification by anyone who is not a Member in good standing of OPEN Alliance is subject to your agreement to the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional terms in this Copyright Notice and Disclaimer. Non-members have the right to use this OPEN Specification solely (i) subject to the non-member’s continued compliance with the OPEN Alliance Specification License Agreement; and (ii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the non-member’s products and services, but only so long as non-member does not distribute, publish, display, or transfer this OPEN Specification to any third party, unless and only to the extent expressly set forth in the OPEN Alliance Specification License Agreement. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in non-member’s products and services, non-member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If non-member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in non-member’s products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such non-member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, non-member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance’s prior written consent. All rights not expressly granted to non-member in the OPEN Alliance Specification License Agreement are reserved.

B. Terms Applicable to both Members and Non-members of OPEN Alliance

B.i. Patents, Trademarks, and other Rights:
OPEN Alliance has received no Patent Disclosure and Licensing Statements related to this OPEN Specification. Therefore, this OPEN Specification contains no specific disclaimer related to third parties that may require a patent license for their Essential Claims. Having said that, the receipt of this OPEN Specification shall not operate as an assignment of or license under any patent, industrial design, trademark, or other rights as may subsist in or be contained in or reproduced in this OPEN Specification; and the implementation of this OPEN Specification could require such a patent license from a third party. You may not use any OPEN Alliance trademarks or logos without OPEN Alliance’s prior written consent.

B.ii. Disclaimers and Limitations of Liability:
THIS OPEN SPECIFICATION IS PROVIDED ON AN “AS IS” BASIS, AND ALL REPRESENTATIONS, WARRANTIES, AND GUARANTEES, EITHER EXPLICIT, IMPLIED, STATUTORY, OR OTHERWISE, ARE EXCLUDED AND DISCLAIMED UNLESS (AND THEN ONLY TO THE EXTENT THEY ARE) MANDATORY UNDER LAW. ACCORDINGLY, OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS OR WARRANTIES OR GUARANTEES WITH REGARD TO THIS OPEN SPECIFICATION OR THE INFORMATION (INCLUDING ANY SOFTWARE) CONTAINED HEREIN. OPEN ALLIANCE AND ALL CONTRIBUTING MEMBERS HEREBY EXPRESSLY DISCLAIM ANY AND ALL SUCH EXPRESS, IMPLIED, STATUTORY, AND ALL OTHER REPRESENTATIONS,
WARRANTIES, AND GUARANTEES, INCLUDING WITHOUT LIMITATION ANY AND ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, TITLE, NON-INFRINGEMENT OF OR ABSENCE OF THIRD PARTY RIGHTS, AND/OR VALIDITY OF RIGHTS IN THIS OPEN SPECIFICATION; AND OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS AS TO THE ACCURACY OR COMPLETENESS OF THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN. WITHOUT LIMITING THE FOREGOING, OPEN ALLIANCE AND/OR CONTRIBUTING MEMBERS HAS(VE) NO OBLIGATION WHATSOEVER TO INDEMNIFY OR DEFEND YOU AGAINST CLAIMS RELATED TO INFRINGEMENT OR MISAPPROPRIATION OF INTELLECTUAL PROPERTY RIGHTS. OPEN ALLIANCE AND CONTRIBUTING MEMBERS ARE NOT, AND SHALL NOT BE, LIABLE FOR ANY LOSSES, COSTS, EXPENSES, OR DAMAGES OF ANY KIND WHATSOEVER (INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, AND/OR EXEMPLARY DAMAGES) ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS OPEN SPECIFICATION OR ANY INFORMATION HEREIN. NOTHING IN THIS DOCUMENT OPERATES TO LIMIT OR EXCLUDE ANY LIABILITY FOR FRAUD OR ANY OTHER LIABILITY WHICH IS NOT PERMITTED TO BE EXCLUDED OR LIMITED BY OPERATION OF LAW.

B.iii. Compliance with Laws and Regulations:
NOTHING IN THIS DOCUMENT OBLIGATES OPEN ALLIANCE OR CONTRIBUTING MEMBERS TO PROVIDE YOU WITH SUPPORT FOR, OR RELATED TO, THIS OPEN SPECIFICATION OR ANY IMPLEMENTED PRODUCTS OR SERVICES. NOTHING IN THIS OPEN SPECIFICATION CREATES ANY WARRANTIES OR GUARANTEES, EITHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, REGARDING ANY LAW OR REGULATION. OPEN ALLIANCE AND CONTRIBUTING MEMBERS EXPRESSLY DISCLAIM ALL LIABILITY, INCLUDING WITHOUT LIMITATION, LIABILITY FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE OPEN SPECIFICATION OR INFORMATION CONTAINED HEREIN. YOU ARE SOLELY RESPONSIBLE FOR THE COMPLIANCE OF IMPLEMENTED PRODUCTS AND SERVICES WITH ANY SUCH LAWS AND REGULATIONS, AND FOR OBTAINING ANY AND ALL REQUIRED AUTHORIZATIONS, PERMITS, AND/OR LICENSES FOR IMPLEMENTED PRODUCTS AND SERVICES RELATED TO SUCH LAWS AND REGULATIONS WITHIN THE APPLICABLE JURISDICTIONS. IF YOU INTEND TO USE THIS OPEN SPECIFICATION, YOU SHOULD CONSULT ALL APPLICABLE LAWS AND REGULATIONS. COMPLIANCE WITH THE PROVISIONS OF THIS OPEN SPECIFICATION DOES NOT CONSTITUTE COMPLIANCE TO ANY APPLICABLE LEGAL OR REGULATORY REQUIREMENTS. IMPLEMENTERS OF THIS OPEN SPECIFICATION ARE SOLELY RESPONSIBLE FOR OBSERVING AND COMPLYING WITH THE APPLICABLE LEGAL AND REGULATORY REQUIREMENTS. WITHOUT LIMITING THE FOREGOING, YOU SHALL NOT USE, RELEASE, TRANSFER, IMPORT, EXPORT, AND/OR RE-EXPORT THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN IN ANY MANNER PROHIBITED UNDER ANY APPLICABLE LAWS AND/OR REGULATIONS, INCLUDING WITHOUT LIMITATION U.S. EXPORT CONTROL LAWS.
B.iv. Automotive Applications Only: Without limiting the foregoing disclaimers or limitations of liability in any way, this OPEN Specification was developed for automotive applications only. This OPEN Specification has neither been developed, nor tested for, non-automotive applications.

B.v. Right to Withdraw or Modify: OPEN Alliance reserves the right to (but is not obligated to) withdraw, modify, or replace this OPEN Specification at any time, without notice.

© 2021 OPEN Alliance. This document also contains contents, the copyrights of which are owned by third parties who are OPEN Alliance Contributing Members. Unauthorized Use Strictly Prohibited. All Rights Reserved.
Contents

Introduction .. 8
Abbreviation/Symbols .. 8
1 Scope.. 9
2 Normative references ... 9
3 Terms and Definitions ... 9
4 Register map ... 10
 4.1 IDVER - ID and Version register (31.CA00)... 10
 4.1.1 IDM... 10
 4.1.2 VER.. 10
 4.2 CTRL0 – Control Register #0 (31.CA01)... 11
 4.2.1 EN... 11
 4.2.2 RST.. 11
 4.3 CTRL1 – Control Register #1 (31.CA02)... 11
 4.3.1 NCNT... 12
 4.3.2 ID... 12
 4.4 STATUS – Status register (31.CA03).. 12
 4.4.1 PST.. 12
 4.5 TOTMR – Transmit opportunity timer register (31.CA04)................................. 12
 4.5.1 TOT.. 13
 4.6 BURST – Burst mode configuration register (31.CA05)....................................... 13
 4.6.1 MAXBC... 13
 4.6.2 BTMR... 14
Introduction

In addition to the 10BASE-T1S PHY, IEEE802.3cg Clause 148 defines the optional PLCA Reconciliation Sublayer for achieving deterministic performance on a shared media (multidrop) network.

Although the RS is defined above the MII from a layering perspective, some 10BASE-T1S implementations embed PLCA in the PHY IC. This allows to add PLCA functionalities connecting to existing MCUs / Ethernet switches that provide an exposed MII interface to the PHY. For such implementations, the PLCA management objects defined in Clause 30 can be mapped to the vendor-defined address space of Clause 45 registers.

In such a way, PLCA can be managed using the same standard MDIO interface already defined for Ethernet PHYs.

Abbreviation/Symbols

* AND
! NOT
+ OR
0x prefix for numbers represented in hexadecimal notation
1 Scope

The objective of this document is to provide a standard set of management registers for 10BASE-T1S implementations embedding the PLCA Reconciliation Sublayer functions.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

3 Terms and Definitions

For the purposes of this document, the terms and definitions given in [1] and [2] apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp
4 Register map

PLCA management registers are defined in MMD 31 (Vendor Specific 2) of the Clause 45 address space.

<table>
<thead>
<tr>
<th>MMD</th>
<th>Address</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0xCA00</td>
<td>IDVER</td>
<td>ID and version register</td>
</tr>
<tr>
<td>31</td>
<td>0xCA01</td>
<td>CTRL0</td>
<td>control register #0</td>
</tr>
<tr>
<td>31</td>
<td>0xCA02</td>
<td>CTRL1</td>
<td>control register #1</td>
</tr>
<tr>
<td>31</td>
<td>0xCA03</td>
<td>STATUS</td>
<td>status register</td>
</tr>
<tr>
<td>31</td>
<td>0xCA04</td>
<td>TOTMR</td>
<td>to_timer configuration</td>
</tr>
<tr>
<td>31</td>
<td>0xCA05</td>
<td>BURST</td>
<td>burst mode configuration</td>
</tr>
</tbody>
</table>

4.1 IDVER - ID and Version register (31.CA00)

The assignment of bits in the PLCA ID and version register is shown in Table A.1.0

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
<th>R/W</th>
<th>Default/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:8</td>
<td>IDM</td>
<td>register map ID</td>
<td>RO</td>
<td>0xA</td>
</tr>
<tr>
<td>7:0</td>
<td>VER</td>
<td>register map version</td>
<td>RO</td>
<td>0x11</td>
</tr>
</tbody>
</table>

NOTE

* RO = read-only, RW = read-write, SC = self-clearing

4.1.1 IDM

Constant field indicating that the address space is defined by this document. These bits shall read as 0x0A (Open Alliance).

4.1.2 VER

Constant field indicating the version of this document the register map conforms to. Some registers/bits defined herein may not be available in all revisions. The management entity can read this register to provide backward compatibility. For the present revision of this specification, these bits shall read as indicated in Table A.1.0/Value.
4.2 CTRL0 – Control Register #0 (31.CA01)

The assignment of bits in the PLCA control register 0 is shown in Table A.1.1

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
<th>R/W</th>
<th>Default/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>EN</td>
<td>PLCA enable</td>
<td>RW</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>RST</td>
<td>PLCA reset</td>
<td>RW,SC</td>
<td>0</td>
</tr>
<tr>
<td>13:0</td>
<td></td>
<td>Reserved</td>
<td>RO</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE

- RO = read-only, RW = read-write, SC = self-clearing

4.2.1 EN

When this bit is set to a logical 1, the PLCA RS functions are enabled. Otherwise, the PHY operates in plain CSMA/CD mode, without the performance enhancement provided by PLCA. This is the default condition.

This bit maps to the `aPLCAAadminState` and `aPLCAAadminControl` objects in [1] Clause 30.

4.2.2 RST

When this bit is set to a logical 1, the PLCA RS functions are reset. This bit is self-clearing and shall read as 1 while PLCA reset is in progress, otherwise it shall read as 0.

This bit maps to the `aPLCAReset` object in [1] Clause 30.

4.3 CTRL1 – Control Register #1 (31.CA02)

The assignment of bits in the PLCA control register 1 is shown in Table A.1.2

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
<th>R/W</th>
<th>Default/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:8</td>
<td>NCNT</td>
<td>Node count</td>
<td>RW</td>
<td>8</td>
</tr>
<tr>
<td>7:0</td>
<td>ID</td>
<td>PLCA ID</td>
<td>RW</td>
<td>255</td>
</tr>
</tbody>
</table>

NOTE

- RO = read-only, RW = read-write, SC = self-clearing
4.3.1 NCNT
This field sets the maximum number of PLCA nodes supported on the multidrop network. On the node with PLCA ID = 0 (see 4.3.2), this value must be set at least to the number of nodes that may be plugged to the network in order for PLCA to operate properly.

This bit maps to the aPLCANodeCount object in [1] Clause 30.

4.3.2 ID
This field sets the PLCA ID of the node. User should ensure this ID is unique across the multidrop network to achieve collision-free operation. The special value 255 causes PLCA functions to be suspended. The special value 0 is used to configure the node as the PLCA coordinator.

This bit maps to the aPLCALocalNodeID object in [1] Clause 30.

4.4 STATUS – Status register (31.CA03)

The assignment of bits in the PLCA status register is shown in Table A.1.3

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
<th>R/W</th>
<th>Default/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>PST</td>
<td>Node status</td>
<td>RO</td>
<td>-</td>
</tr>
<tr>
<td>14:0</td>
<td></td>
<td>Reserved</td>
<td>RO</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE
* RO = read-only, RW = read-write, SC = self-clearing

4.4.1 PST
This field reads as 1 when the node is either

- configured as coordinator (ID = 0) and the BEACON signal is being transmitted regularly
- configured as a follower (ID > 0) and the BEACON signal is being received regularly

It reads 0 otherwise.

This bit maps to the aPLCAStatus object in [1] Clause 30.

4.5 TOTMR – Transmit opportunity timer register (31.CA04)

The assignment of bits in the PLCA transmit opportunity timer register is shown in Table A.1.4
Table A.1.4 — TOTMR bits assignment

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
<th>R/W</th>
<th>Default/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:8</td>
<td>-</td>
<td>Reserved</td>
<td>RO</td>
<td>0</td>
</tr>
<tr>
<td>7:0</td>
<td>TOT</td>
<td>to_timer value</td>
<td>RW</td>
<td>32</td>
</tr>
</tbody>
</table>

NOTE

a RO = read-only, RW = read-write, SC = self-clearing

4.5.1 TOT
This field sets the value of the PLCA to_timer in bit-times, which determines the PLCA transmit opportunity window opening. For a discussion on how this timer relates to the network and PHY parameters, please consult [1].

For achieving collision-free operation, the to_timer must be set equally across all the nodes on the multidrop network. The default value guarantees proper operation of a network featuring IEEE conformant PLCA enabled nodes communicating over a 25 m twisted-pair cable in line topology.

This bit maps to the aPLCATransmitOpportunityTimer object in [1] Clause 30.

4.6 BURST – Burst mode configuration register (31.CA05)
The assignment of bits in the PLCA burst mode register is shown in Table A.1.5

Table A.1.5 — BURST bits assignment

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Name</th>
<th>Description</th>
<th>R/W</th>
<th>Default/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:8</td>
<td>MAXBC</td>
<td>Max burst count</td>
<td>RW</td>
<td>0</td>
</tr>
<tr>
<td>7:0</td>
<td>BTMR</td>
<td>Burst Timer</td>
<td>RW</td>
<td>128</td>
</tr>
</tbody>
</table>

NOTE

a RO = read-only, RW = read-write, SC = self-clearing

4.6.1 MAXBC
This field sets the maximum number of additional packets the node is allowed to send during its own transmit opportunity. When set to 0, PLCA burst mode is turned off. This is the default condition. Refer to [1] for a discussion about burst mode and its purpose.

This bit maps to the aPLCAMaxBurstCount object in [1] Clause 30.
4.6.2 BTMR
This field sets the value of the PLCA burst_timer in bit-times. When burst mode is enabled by setting MAXBC to a non-zero value (see 4.6.1), these bits configure the amount of time to wait for the MAC to deliver a new packet before yielding the current transmit opportunity. To ensure proper operation of PLCA burst mode, this field must be set greater than the local MAC IPG duration, including any additional MAC TX latency. The default value is enough for typical MAC implementations. If PLCA burst mode is not used, the value of this field is ignored by the PLCA RS.

This bit maps to the aPLCABurstTimer object in [1] Clause 30.