1000BASE-T1 Physical Coding Sublayer Test Suite

Version 1.0

Author & Company	Bob Noseworthy UNH - IOL
Title	1000BASE-T1 Physical Coding Sublayer Test Suite
Version	1.0
Date	February 2, 2024
Status	Final
Restriction Level	Public

This suite of tests has been developed to help implementers identify problems that 1000BASE-T1 devices may have with the PCS functions.

Version Control of Document

Version	Author	Description	Date
0.1	Stephen Johnson / UNH – IOL	First Draft	2017-05-15
0.2	Stephen Johnson / UNH – IOL	Second Draft	2017-08-02
0.3	Curtis Donahue / UNH – IOL	Third Draft	2017-12-12
0.4	Curtis Donahue / UNH – IOL	Fourth Draft	2020-03-10
	Liang Zhu / Marvell Semiconductor		
0.5	Curtis Donahue / UNH – IOL	Fifth Draft	2020-04-21
0.6	Curtis Donahue / UNH – IOL	Sixth Draft	2020-10-28
	Bob Noseworthy / UNH – IOL		
0.7	Bob Noseworthy / UNH – IOL	Seventh draft	2021-12-15
0.8	Bob Noseworthy / UNH – IOL	Eighth draft	2022-11-30
0.9	Bob Noseworthy / UNH – IOL	Ninth draft	2023-04-05
0.9.1	Bob Noseworthy / UNH – IOL	Tenth draft	2023-08-23
0.9.2	Bob Noseworthy / UNH – IOL	Eleventh draft	2023-09-06
1.0	Bob Noseworthy / UNH – IOL	Twelth draft	2023-11-15

Restriction level history of Document

Version	Restriction Level	Description	Date
0.1	OPEN Technical		2017-05-15
	Members only		
0.2	OPEN Technical	Added Groups 4, 5, and 6	2017-08-02
	Members only	Added IEEE test references	
		Added DUT requirements	
0.3	OPEN Technical	Editorial changes	2017-12-12
	Members only	Updated Disclaimer section	
0.4	OPEN Technical	Replace GMII related procedures with RGMII	2020-03-10
	Members only	Updated IEEE 802.3bp-2016 references to 802.3-2018	
		Editorial changes	
0.5	OPEN Technical	Added Appendix 5.B.1 - Testing Devices Without RGMII	2020-04-21
	Members only	Access	
0.6	OPEN Technical	Updated document, reducing need for management or	2020-10-28
	Members only	GMII access, sizeable change to Group 6 (RFER	
		Monitor).	
0.7	OPEN Technical	Updated: Test 97.1.1 – PCS Reset, Test 97.2.3 – Control	2021-12-15
	Members only	<u>Codes</u> , <u>Test 97.4.1 – Receive Bit Order</u> , <u>Test 97.5.2 –</u>	
		RECEIVE_DATA	
		Editorial changes to: <u>Test 97.6.4 – HI_RFER set when</u>	
		too many errors in window and to all Appendices	
		(renumbered, references fixed). Removed section 3.2	
		Test References, renumbered 3.3 DUT Requirements to	
		3.2.	
0.8	OPEN Technical	Addressing comments and improvements from early	2022-11-30
	Members only	testing	

0.9	OPEN Technical	Addressing comments and improvements from testing,	2023-04-05
	Members only	clarified language, including Appendix B and C.	
0.9.1	OPEN Technical	Addressing comments from TC12 committee	2023-08-23
	Members only		
0.9.2	OPEN Technical	Clarified Part B of PCS.97.4.1	2023-09-06
	Members only		
1.0	OPEN Technical	For IPR, no other changes than editorial document	2023-11-15
	Members only	cleanup	

ACKNOWLEDGEMENTS

The OPEN Alliance would like to acknowledge the efforts of the following individuals in the development of this test suite.

Curtis Donahue	University of New Hampshire
Stephen Johnson	University of New Hampshire
Bob Noseworthy	University of New Hampshire
Natalie Wienckowski	General Motors
Liang Zhu	Marvell Semiconductor
Wei Lou	Broadcom Corporation

Contents

1	C	Copyri	ght Notice and Disclaimer
2	Ir	ntrod	uction7
	2.1	٥v	verview7
	2.2	No	ormative References
	2.3	Те	rms and definitions7
3	C	Organi	zation of Tests8
	3.1	Ele	ementary Test Structure
	3.2	DL	JT Requirements9
4	Т	est Ca	ases
	4.1	GF	OUP 1: PCS Functions
	4	.1.1	Test PCS.97.1.1 – PCS Reset
	4.2	GF	OUP 2: PCS Transmit
	4	.2.1	Test PCS.97.2.1 – Transmit Encoding
	4	.2.2	Test PCS.97.2.2 – Side Stream Scrambling13
	4	.2.3	Test PCS.97.2.3 – Control Codes
	4.3	GF	OUP 3: PCS Transmit State Diagram
	4	.3.1	Test PCS.97.3.1 – DISABLE_TRANSMITTER17
	4	.3.2	Test PCS.97.3.2 – SEND_IDLES
	4	.3.3	Test PCS.97.3.3 – SEND_DATA
	4.4	GF	20 OUP 4: PCS Receive
	4	.4.1	Test PCS.97.4.1 – Receive Bit Order
	4	.4.2	Test PCS.97.4.2 – Side Stream Descrambling21
	4	.4.3	Test PCS.97.4.3 – Decoding22
	4.5	GF	OUP 5: PCS Receive State Diagram
	4	.5.1	Test PCS.97.5.1 – RECEIVE_INIT
	4	.5.2	Test PCS.97.5.2 – RECEIVE_DATA25
	4.6	GF	OUP 6: RFER Monitor State Diagram
	4	.6.1	Test PCS.97.6.1 – Verify Operation without high BER27
	4	.6.2	Test PCS.97.6.2 – Verify Operation in presence of low forced BER
	4	.6.3	Test PCS.97.6.3 – HI_RFER not set when below limits
	4	.6.4	Test PCS.97.6.4 – HI_RFER set when too many errors in window

	4.6	.5 Test PCS.97.6.5 – HI_RFER set with consecutive errors	.33
5	Арг	pendices	.34
	5.1	Appendix A –Testing Devices Without RGMII Access	.34
	5.2	Appendix B – Test Stations	.35
	5.3	Appendix C – Line Tap	.37

1 Copyright Notice and Disclaimer

OPEN Alliance members whose contributions were incorporated in the OPEN Specification (the "Contributing Members") own the copyrights in the OPEN Specification, and permit the use of this OPEN Specification as follows:

OPEN ALLIANCE MEMBERS: Members of OPEN Alliance have the right to use this OPEN Specification, subject to the Member's continued compliance with the OPEN Alliance governance documents, Intellectual Property Rights Policy, and the applicable OPEN Alliance Promoter or Adopter Agreement; and

NON-MEMBERS OF OPEN ALLIANCE: Use of the OPEN Specification by anyone who is not a Member of OPEN Alliance is prohibited.

The receipt of an OPEN Specification shall not operate as an assignment or license under any patent, industrial design, trademark, or other rights as may subsist in or be contained in or reproduced in any OPEN Specification. The implementation of this OPEN Specification will require such a license.

THIS OPEN SPECIFICATION IS PROVIDED ON AN "AS IS" BASIS AND ALL WARRANTIES, EITHER EXPLICIT OR IMPLIED, ARE EXCLUDED UNLESS MANDATORY UNDER LAW. ACCORDINGLY, THE OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS OR WARRANTIES WITH REGARD TO THE OPEN SPECIFICATION OR THE INFORMATION (INCLUDING ANY SOFTWARE) CONTAINED THEREIN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR PURPOSE, OR ABSENCE OF THIRD PARTY RIGHTS AND MAKE NO REPRESENTATIONS AS TO THE ACCURACY OR COMPLETENESS OF THE OPEN SPECIFICATION OR ANY INFORMATION CONTAINED THEREIN.

THE OPEN ALLIANCE AND CONTRIBUTING MEMBERS ARE NOT LIABLE FOR ANY LOSSES, COSTS, EXPENSES OR DAMAGES ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THE OPEN SPECIFICATION OR ANY INFORMATION THEREIN. NOTHING IN THIS DOCUMENT OPERATES TO LIMIT OR EXCLUDE ANY LIABILITY FOR FRAUD OR ANY OTHER LIABILITY WHICH IS NOT PERMITTED TO BE EXCLUDED OR LIMITED BY OPERATION OF LAW.

Without prejudice to the foregoing, the OPEN Specification was developed for automotive applications only. The OPEN Specification has neither been developed, nor tested for non-automotive applications.

2 Introduction

2.1 Overview

This particular suite of tests has been developed to help implementers evaluate the functionality of the PCS sublayer of their 1000BASE-T1 device.

These tests are designed to determine if a product conforms to specifications defined in IEEE802.3 Clause 97. Successful completion of all tests contained in this suite does not guarantee that the tested device will operate with other devices. However, combined with satisfactory operation when tested in accordance with the OPEN Alliance 1000BASE-T1 Interoperability Test Suite, these tests provide a reasonable level of confidence that the Device Under Test (DUT) will function properly in many 1000BASE-T1 automotive environments.

The tests contained in this document are organized in such a manner as to simplify the identification of information related to a test, and to facilitate in the actual testing process. Tests are organized into groups, primarily in order to reduce setup time in the lab environment, however the different groups typically also tend to focus on specific aspects of device functionality. A three-part numbering system is used to organize the tests, where the first number indicates the section of the IEEE 802.3 Standard on which the test suite is based. The second and third numbers indicate the test's group number and test number within that group, respectively. This format allows for the addition of future tests to the appropriate groups without requiring the renumbering of the subsequent tests.

2.2 Normative References

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEEE 802.3-2022

2.3 Terms and definitions

DUT Device Under Test

3 Organization of Tests

The test definitions themselves are intended to provide a high-level description of the motivation, resources, procedures, and methodologies pertinent to each test.

3.1 Elementary Test Structure

Specifically, each test description consists of the following fields as shown in Table 3.1. A brief description of each field is provided.

Purpose	The purpose is a brief statement outlining what the test attempts to achieve.
	The test is written at the functional level.
References	This section specifies source material <i>external</i> to the test suite, including specific
	subsections pertinent to the test definition, or any other references that might
	be helpful in understanding the test methodology and/or test results. External
	sources are always referenced by number when mentioned in the test
	description. Any other references not specified by number are stated with
	respect to the test suite document itself.
Resource	The requirements section specifies the test hardware and/or software needed to
Requirements	perform the test. This is generally expressed in terms of minimum
	requirements; however, in some cases specific equipment manufacturer/model
	information may be provided.
Discussion	The discussion covers the assumptions made in the design or implementation of
	the test, as well as known limitations. Other items specific to the test are
	covered here.
Test Setup	The setup section describes the initial configuration of the test environment.
	Small changes in the configuration should not be included here, and are
	generally covered in the test procedure section, below.
Test Procedure	The procedure section of the test description contains the systematic
	instructions for carrying out the test. It provides a cookbook approach to
	testing, and may be interspersed with observable results.
Observable	This section lists the specific observables that can be examined by the tester in
Results	order to verify that the DUT is operating properly. When multiple values for an
	observable are possible, this section provides a short discussion on how to
	interpret them. The determination of a pass or fail outcome for a particular test
	is generally based on the successful (or unsuccessful) detection of a specific
	observable.
Potential Issues	This section contains a description of known issues with the test procedure,
	which may affect test results in certain situations. It may also refer the reader to
	test suite appendices and/or whitepapers that may provide more detail
	regarding these issues.

Table 3.1 – Elementary Test Structure

3.2 DUT Requirements

For the purposes of this test suite, the DUT is one port of a 1000BASE-T1 capable device that includes a 1000BASE-T1 PHY mounted on a PCB with an MDI connector and any necessary circuitry such as a low pass filter or common mode choke. All tests will be performed at the MDI connector of the DUT.

Please see the additional requirements listed in table 3.2:

	Required Capabilities			oilities
Test Number and Name	PCS Reset	GMII/LP(*1)	MDIO	Comment
		\checkmark		+ Config as Master &
Test PCS.97.1.1 – PCS Reset	✓	(Observables		Slave
		a,c, e,g)		+ link_status indication
Test PCS.97.2.1 – Transmit Encoding				
Tast BCS 07.2.2 Side Stream Scrambling				+ Config as Master &
				Slave
Test PCS.97.2.3 – Control Codes		✓ (Part b, c)		Part c requires (R)GMII
Test PCS.97.3.1 – DISABLE_TRANSMITTER	\checkmark			
Test PCS.97.3.2 – SEND_IDLES				
Test PCS.97.3.3 – SEND_DATA		\checkmark		
Test PCS.97.4.1 – Receive Bit Order			\checkmark	+ 3.2306 access (*2)
Test PCS 97.4.2 - Side Stream Descrambling				+ Config as Master &
				Slave
Test PCS.97.4.3 – Decoding		✓		
Test PCS.97.5.1 – RECEIVE_INIT		✓		Part a requires (R)GMII
Test PCS.97.5.2 – RECEIVE_DATA		✓	\checkmark	+ 3.2306.6 access (*2)
Test PCS.97.6.1 – Verify Operation without			\checkmark	+ link_status indication
high BER				+ 3.2306 access (*3)
Test PCS.97.6.2 – Verify Operation in			\checkmark	+ link_status indication
presence of low forced BER				+ 3.2306 access (*3,4)
Test PCS.97.6.3 – HI_RFER not set when			\checkmark	+ link_status indication
below limits				+ 3.2306 access (*3,4)
Test PCS.97.6.4 – HI_RFER set when too			\checkmark	+ link_status indication
many errors in window			•	+ 3.2306 access (*3,4)
Test PCS.97.6.5 – HI_RFER set with			\checkmark	+ link_status indication
consecutive errors			÷	+ 3.2306 access (*3)

Table 3.2 -DUT Requirements	Table	3.2 –	DUT	Rea	uireme	nts
-----------------------------	-------	-------	-----	-----	--------	-----

(*1) GMII access equivalent or line-side loopback above the PCS but below any MAC if present

(*2) Optional MDIO register access or equivalent to read 3.2306.6 and 3.2306.7

(*3) Optional MDIO register access or equivalent to latching-high hi_rfer register bit (3.2306.7)

(*4) Optional MDIO register access or equivalent to RFER_count (3.2306.5:0)

4 Test Cases

The following test cases shall be performed on all 1000BASE-T1 PHYs.

4.1 **GROUP 1: PCS Functions**

This section verifies the integrity of the 1000BASE-T1 PCS Functions.

Purpose	To verify that the PCS properly initializes upon receipt of a reset request from the management entity, and links and passes frames as expected.
References	[1] IEEE 802.3 – 2022 Subclause 97.3.2.1 – PCS Reset function
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) (R)GMII Test Station (refer to <u>Appendix B</u>) Management access to <i>link_status</i> and/or led indication of <i>link_status</i>
Discussion	Reference [1] states that the PCS is reset when power for the device containing the PMA has not yet reached the operating state, or upon the receipt of a reset request from management entity. The PCS Reset function should cause all state diagrams to take the open-ended pcs_reset branch upon execution of PCS Reset. PCS Reset is distinct from pma_reset, thus the behavior on the wire is undefined by the standard. This test will simply verify that if a pcs_reset can be performed; normal link operation resumes as expected. NOTE: A link interruption is allowed following a PCS reset. Any test frames sent while the link is down are not expected to be received or looped back.
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.
Test Procedure Part A	 Part A: DUT as MASTER properly reacts to a PCS Reset. 1. Configure the DUT as MASTER. 2. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 3. Monitor and decode transmissions from the DUT. a. If available, monitor and decode transmissions on the DUT's GMII (or equivalent) receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC. 4. Send at least one frame from the Transmit station to the DUT to verify the DUT is operational. a. If possible, continue to send frames through the rest of this test. 5. Perform a PCS reset. If necessary, re-establish a link with the DUT. 6. Send at least one frame from the Transmit station to the DUT to verify the DUT is operational following the reset (or continue sending per step 4 above). 7. Monitor and decode transmissions from the DUT.

4.1.1 Test PCS.97.1.1 – PCS Reset

Observable Results for Part A	In step 2, a link should be established. In step 4, after a frame is sent the Monitoring station should receive a frame as observed either on the GMII equivalent interface, or via the loopback. In step 5, a link should be established (or remain established). In step 7, after a frame is sent the Monitoring station should receive a frame as observed either on the GMII equivalent interface, or via the loopback. When a frame is not being sent, the DUT should send IBLOCK_R up the GMII (or equivalent interface), if accessible.
Test Procedure Part B	 Part B: DUT as SLAVE properly reacts to a PCS Reset. {Note: this part is effectively identical to the MASTER case} 8. Configure the DUT as SLAVE. 9. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT 10. Monitor and decode transmissions from the DUT. a. If available, monitor and decode transmissions on the DUT's GMII (or equivalent) receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC. 11. Send at least one frame from the Transmit station to the DUT to verify the DUT is operational. a. If possible, continue to send frames through the rest of this test. 12. Perform a PCS reset. If necessary, re-establish a link with the DUT. 13. Send at least one frame from the Transmit station to the DUT to verify the DUT is operational following the reset (or continue sending per step 4 above). 14. Monitor and decode transmissions from the DUT. Configure the DUT as slave and repeat steps 2 through 7.
Observable Results for Part B	In step 9, a link should be established. In step 11, after a frame is sent the Monitoring station should receive a frame as observed either on the GMII equivalent interface, or via the loopback. In step 12, a link should be established (or remain established). In step 14, after a frame is sent the Monitoring station should receive a frame as observed either on the GMII equivalent interface, or via the loopback. When a frame is not being sent, the DUT should send IBLOCK_R up the GMII (or equivalent interface), if accessible.
Potential Issues	If the ability to control the PCS Reset request is not available, this test cannot be performed. Some devices may not allow configuration as master or slave, in which case only the supported configuration will be tested.

4.2 GROUP 2: PCS Transmit

This section verifies the integrity of the 1000BASE-T1 PCS Transmit function.

Purpose	To verify that the DUT correctly encodes RGMII transfers into 80B/81B blocks, performs RS-FEC encoding, and 3B2T to PAM3 mapping.		
References	 [1] IEEE 802.3 - 2022 Subclause 97.3.2.2.4 - Transmission order [2] IEEE 802.3 - 2022 Figure 97 - 5 - PCS Transmit bit ordering [3] IEEE 802.3 - 2022 Figure 97 - 7 - PCS detailed transmit bit ordering [4] IEEE 802.3 - 2022 Subclause 97.3.2.2.5 - Block structure [5] IEEE 802.3 - 2022 Subclause 97.3.2.2.11 - RS-FEC encoder [6] IEEE 802.3 - 2022 Equation 97 - 1 FEC encoder [7] IEEE 802.3 - 2022 Subclause 97.3.2.2.13 - 3B2T to PAM3 [8] IEEE 802.3 - 2022 Table 97 - 1 GMII control code mapping [9] IEEE 802.3 - 2022 Table 97 - 2 - 3B2T Mapping to PAM3 		
Resource	1000BASE-T1 Test Station (refer to <u>Appendix B</u>)		
Requirements	1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)		
Discussion	The DUT should conform to the transmission order defined in [1], the transmit bit ordering defined in [2] and [3], the 81-bit block structure defined in [4], the RS-FEC encoding rules defined in [5], and the 3B2T to PAM3 mapping defined in [7] and [9].		
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station and the 1000BASE-T1 Monitor Station.		
Test Procedure for Part A	 Part A: DUT transmits Idle Establish a link with the DUT. Cause the DUT to transmit an Idle stream to the test station. Monitor and decode transmissions from the DUT. 		
Observable Results for Part A	a) In step 3, the DUT should be observed to transmit the Idle stream with the appropriate bit ordering, block structure, RS-FEC encoding, and 3B2T to PAM3 mapping.		
Test Procedure for Part B	 Part B: DUT encodes data with no errors 4. Establish a link with the DUT. 5. Cause the DUT to transmit valid frames. 6. Monitor and decode transmissions from the DUT. 		
Observable Results for Part B	b) In step 6, the DUT should be observed to transmit the valid frames with the appropriate bit ordering, block structure, RS-FEC encoding, and 3B2T to PAM3 mapping.		
Determined lands and	None		

4.2.1 Test PCS.97.2.1 – Transmit Encoding

Purpose	To verify that the DUT employs the scrambler polynomial defined in equation 97 – 3 when configured as MASTER and equation 97 – 4 when configured as SLAVE.		
References	 [1] IEEE 802.3 – 2022 Subclause 97.3.2.2.12 – PCS scrambler [2] IEEE 802.3 – 2022 Equation 97 – 3 – MASTER scrambler polynomial [3] IEEE 802.3 – 2022 Equation 97 – 4 – SLAVE scrambler polynomial [4] IEEE 802.3 – 2022 Figure 97 – 9 MASTER and SLAVE PCS scramblers 		
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)		
Discussion	The 1000BASE-T1 PCS uses a side stream scrambler to reduce correlation in transmitted data. The initial seed value for the MASTER and SLAVE scramblers are left up to the implementer with the exception that they shall be non-zero. The seed value is then transmitted to the link partner during the InfoField exchange. The scrambler is then run continuously on all PHY frame output bits.		
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station and the 1000BASE-T1 Monitor Station.		
Test Procedure for Part A	 Part A: Side stream scrambler polynomial Configure the DUT as MASTER. Establish a link with the DUT. Causing the DUT to transmit an Idle stream to the testing station. Monitor the transmissions from the DUT. Configure the DUT as SLAVE and repeat steps 2 and 3. 		
Observable Results for Part A	 a) The DUT should use the scrambler polynomial defined in 97 – 3 when configured as MASTER. The DUT should use the scrambler polynomial defined in 97 – 4 when configured as SLAVE. 		
Potential Issues	Some devices may not allow configuration as master or slave, in which case only the supported configuration will be tested.		

4.2.2 Test PCS.97.2.2 – Side Stream Scrambling

4.2.3 Test PCS.97.2.3 – Control Codes

Purpose	To verify th defined in	hat the [[2].	OUT prop	perly end	odes 81	-bit bloc	ks based	d on the	control	codes
References	[1] IEEE 80 TX_EN [2] IEEE 80 [3] IEEE 80 [4] IEEE802	2.3 – 20 2.3 – 20 2.3 – 20 2.3 – 201	22 Table 22 Subc 22 Subc 18 Table	e 35 – 1 lause 97 lause 97 97 – 1 G	– Permis 7.3.2.2.5 7.3.2.2.6 iMII con	ssible en – Block – Contro trol code	coding c structure ol codes e mappir	of TXD<7 e ng	2:0>, TX_	ER, and
Resource	1000BASE-	T1 Test	Station (refer to	Append	l <u>ix B</u>)				
Requirements	1000BASE-	T1 Mon	itor Stat	ion (refe	r to <u>App</u>	<u>pendix B</u>				
	(R)GMII Te	st Statio	n (refer	to <u>Appe</u>	<u>ndix B</u>)					
Discussion	The 1000B and their n Frame con 80B/81B b is present, the RGMII and TX_ER any Reserv examined from the m and the TX TXERR=1 for Patterns us	ASE-T1 F neanings trol code lock cod when T2 indicate =1. Per [red enco n case 3 nultiplex ERR sign or one T2 sed in Pa	PCS supp s are def e (either e when X_EN=0 s TX_EN 3], any (ding sho 3], any (ding sho	oorts a su ined in [000 or 0 the RGM and TX_I =1 and T GMII enc build be e this test (_EN dur during th , TX_CTL shown b	ubset of 1], and 10 base 111 indica ER=0. T XERR=1 coding o encoded referen ring the is deno below fo	RGMII C [3]. The l ed on the ates TX_E he PCS c or if the f Carrier as Norm ces TX_C rising ed g edge of ted "0,1"	ontrol c PCS conv e loc_ph EN=0 and onveys a e GMII is Extend, hal Inter- CTL, the ge of the the TXC	odes. Su veys a N y_ready d TXERR a Transm present Carrier Frame, RGMII si e transm C. If TX_	ipported ormal In variable =0 or if t nit Error , when T Extend E which is gnal for nitter clc EN=0 an	l codes ter- e) in the the GMII when TX_EN=1 frror, or med ock (TXC) d
	Initial patt	ern (Sing	gle error	in all 10	81B pos	sitions):		I		
		D1	D2	D3	D4	D5	D6		D8	D9
	2 TX FR=1	TX_ER=0	TX FR=0	TX_ER=0	TX_ER=0	TX FR=0	TX_ER=0	TX_ER=0	TX_ER=0	TX FR=0
	3 TX ER=0	TX ER=1	TX ER=0	TX ER=0	TX ER=0	TX ER=0	TX ER=0	TX ER=0	TX ER=0	TX ER=0
	4 TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0
	5 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0
	6 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0
	7 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0
	8 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0	TX_ER=0	TX_ER=0
	9 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0	TX_ER=0
	10 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1	TX_ER=0
	11 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=1
	-									
	Second par	ter (sing	gle non-e	error in a	all 10 81	B positic	ons):		1	
	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9
	1 TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0	TX_ER=0
	2 IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1	IX_ER=1
	3 IX_ER=1	IX_EK=1	IX_EK=1	IX_EK=1	TY EP-4	TY EP-4	IX_EK=1	IX_EK=1	IX_EK=1	IX_EK=1
	4 1A_EK=0	TX EP-1	TX ER-1	TX EP-1	TX EP-1	TX FR-1	TX EP-1	TX EP-1	TX EP-1	TX FP-1
	6 TX FR-1	TX FR-0	TX FR-1	TX FR-1	TX FR-1	TX FR-1	TX FR-1	TX FR-1	TX FR-1	TX FR-1
	7 TX FR=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1
	8 TX ER=1	TX ER=1	TX ER=0	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1	TX ER=1
	9 TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1	TX_ER=1

Restriction Level: Public

	10 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=0 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1
	11 TX_ER=1
	12 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=0 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1
	13 TX_ER=1
	14 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=0 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1
	15 TX_ER=1
	16 TX_ER=1
	17 TX_ER=1
	18 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=0 TX_ER=1 TX_ER=1
	19 TX_ER=1
	20 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=1 TX_ER=0 TX_ER=1
	21 TX_ER=1 TX_
	22 IX_ER=1 IX_ER=0
	23 IX_ER=0 IX_
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor
	station and, if a suitable interface is exposed, the (R)GMII Test Station.
Test Procedure	Part A: DUT transmits Normal Inter-Frame control code between frames
for Part A	1 Establish a link with the DLIT
	2 Cause the DUT to transmit an Idle stream to the testing station, with at least 2
	2. Cause the DOT to transmit an fulle stream to the testing station, with at least 2 frames cont spaced at a minimum interframe gap (eq. 12 bytes)
	Trames sent spaced at a minimum interframe gap (eg. 12 bytes).
	3. Monitor and decode transmissions from the DUI.
Observable	a) The DUT should transmit the Normal Inter-Frame control code when not
Results for Part A	sending frame data.
Test Procedure	Part B: DUT transmits the Transmit Error control code
for Dart P	A Establish a link with the DUT
	4. ESTADIISH A IIIK WITH THE DOT.
	5. Cause the DUT to transmit frames with transmit errors; eg: IX_EN=IX_ER=1.
	a. The pattern stimulated should be at least a 110 byte frame consisting of
	10 non-error bytes followed by 10 transmit errors, each spaced 11
	bytes apart, such that all control code encodings of the 81B vector are
	stimulated.
	b. The pattern stimulated may be through direct GMII (or equivalent)
	access, or via loopback. The loopback must loop received code groups
	from the line back to the transmitter. The loophack must include the
	PCS but not include the MAC
	A Monitor and decode transmissions from the DUT
	 Monitor and decode transmissions from the DoT. Decode transmissions from the DoT.
	7. Repeat steps 4 through 6 replacing the pattern with a 230 byte frame,
	consisting of 10 non-error bytes as the first and last 10 bytes of the frame, and a
	pattern, repeated 10 times, of 20 consecutive error bytes followed by 1 non-
	errored data byte. Thus stimulating the 81B vector's encoding of control and
	data words throughout all possible positions of single data byte encodings, and
	validating encoding of 81B vectors of all non-idle control words.
Observable	h) The DUT should transmit the appropriate Error symbol in place of a transmit
Results for Part P	error Evamining decoded 80B/81B blocks should show single transmit error
Results for Fart B	leastions in all positions (0 through 0) in the first iteration, and single data but
	iocations in all positions (0 through 9) in the first iteration, and single data byte
	encodings in all positions (0 through 0) in the second iteration, along with entire
	81B block encodings of control words (with RGMII control code 0b001).

OPEN Alliance

Test Procedure for Part C	 Part C: DUT does not transmit reserved control codes 8. Establish a link with the DUT. 9. If possible, cause the DUT to transmit an Idle stream with TXD<7:0> = 0F and: if RGMII: TX_CTL=0,1; and if GMII: TX_EN=0, TX_ER=1. 10. Monitor and decode transmissions from the DUT. 11. Repeat steps 8 and 9 but cause the DUT to transmit an Idle stream with TXD<7:0> = 1F and: if RGMII: TX_CTL=0,1; and if GMII: TX_EN=0, TX_ER=1. 12. Repeat steps 8 and 9 but cause the DUT to transmit an Idle stream with TXD<7:0> = 20 and: if RGMII: TX_CTL=0, 1; and if GMII: TX_EN=0, TX_ER=1.
Observable Results for Part C	 c) The DUT should encode the Carrier Extend, Carrier Extend Error, and Reserved control codes as Normal Inter-Frame.
Potential Issues	Test part B cannot be performed if access to a GMII equivalent interface is not provided, or an appropriate loopback is not available. Test part C cannot be performed if access to a GMII equivalent interface is not provided.

4.3 GROUP 3: PCS Transmit State Diagram

This section verifies the integrity of the 1000BASE-T1 PCS Transmit state diagram.

Purpose	To verify that the DUT properly behaves in the DISABLE_TRANSMITTER state.	
References	[1] IEEE 802.3 – 2022 Figure 97 – 14 – PCS Transmit state diagram [2] IEEE 802.3 – 2022 Subclause 97.3.6.2.2 – Variables [3] IEEE 802.3 – 2022 Subclause 97.3.6.3 - Messages	
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)	
Discussion	A 1000BASE-T1 device will enter the DISABLE_TRANSMITTER state upon a PCS Reset. PCS Reset is distinct from pma_reset, thus the behavior on the wire is undefined by the standard. This test will simply verify that if a pcs_reset can be performed, normal link operation resumes as expected, once the DUT has aggregated 10 RGMII transfers into tx_raw<99:0> the DUT will transition to the SEND_IDLES state.	
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station and the 1000BASE-T1 Monitor Station.	
Test Procedure Part A	 Part A: DUT transitions to SEND_IDLES 1. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 2. Perform a PCS Reset on the DUT. If necessary, re-establish a link with the DUT. 3. Monitor transmissions from the DUT. 	
Observable Results for Part A	a) The DUT should begin transmitting IBLOCK_T following the PCS Reset. The DUT may also be observed to break and re-establish link.	
Potential Issues	If the ability to control the PCS Reset request is not available, this test cannot be performed.	

4.3.1 Test PCS.97.3.1 - DISABLE_TRANSMITTER

4.3.2	Test PCS.97.	3.2 -	SEND.	IDLES
-------	--------------	-------	-------	-------

Purpose	To verify that the DUT properly behaves in the SEND_IDLES state.		
References	 [1] IEEE 802.3 – 2022 Figure 97 – 14 – PCS Transmit state diagram [2] IEEE 802.3 – 2022 Subclause 97.3.6.2.2 – Variables [3] IEEE 802.3 – 2022 Subclause 97.3.6.3 - Messages 		
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) (R)GMII Test Station (refer to <u>Appendix B</u>)		
Discussion	A 1000BASE-T1 device will enter the SEND_IDLES state when 10 successive RGMII transfers have been aggregated into tx_raw<99:0>. The DUT will remain in this state as long as tx_data_mode = FALSE. When tx_data_mode = TRUE and 10 successive RGMII transfers have been aggregated, the DUT will transition to the SEND_DATA state.		
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.		
Test Procedure Part A	 Part A: DUT sends IBLOCK_T when in SEND_IDLES 1. Establish a link with the DUT. a. Send from the Transmit station signaling indicating rem_phy_ready = NOT_OK. 2. Monitor transmissions from the DUT. 		
Observable Results for Part A	 a) In step 2, after training, the DUT should transmit IBLOCK_T while in the SEND_IDLES state, observed by receive of Idle signaling at the Monitor station. 		
Test Procedure Part B	 Part B: DUT transitions to SEND_DATA 3. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 4. Through any means (loopback, GMII stimulation, etc) stimulate frame transmission from the DUT. 5. Monitor transmissions from the DUT. 		
Observable Results for Part B	 b) The DUT should begin transmitting the encoded version of tx_raw<99:0> as stimulated in step 4. As block alignment is unknown, the tx_raw vector should correspond to the expected frame data received by the DUT (either via GMII or via loopback). 		
Potential Issues	None.		

4.3.3 Test PCS.97.3.3 - SEND_DATA

Purpose	To verify that the DUT properly behaves in the SEND_DATA state.
References	[1] IEEE 802.3 – 2022 Figure 97 – 14 – PCS Transmit state diagram
	[2] IEEE 802.3 – 2022 Subclause 97.3.6.2.2 – Variables
	[3] IEEE 802.3 – 2022 Subclause 97.3.6.3 - Messages
Resource	1000BASE-T1 Test Station (refer to <u>Appendix B</u>)
Requirements	1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)
	(R)GMII Test Station (refer to <u>Appendix B</u>)
Discussion	A 1000BASE-T1 device will enter the SEND_DATA state when 10 successive RGMI
	transfers have been aggregated into tx_raw<99:0> and tx_data_mode = IRUE.
	ty data mode = EALSE and 10 successive RGMII transfers have been aggregated
	the DUT will transition to the SEND IDLES state.
	Note that, once a 1000BASE-T1 device enters the SEND N state
	(tx_data_mode=true) it cannot leave this state without going through SEND_Z
	and re-training, thus a "SEND_DATA" to "SEND_IDLES" state transition must also
	have a training sequence before observing the IBLOCK_T transmission while in the
	SEND_IDLES state.
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor
	station and, if a suitable interface is exposed, the (R)GMII Test Station.
Test Procedure	Part A: DUT Encodes tx_raw<99:0> and transmits properly
Part A	1. Establish a link with the DUI.
	a. Send from the transmit station valid link signaling such that
	2. Through any means (loopback, GMII stimulation, etc) stimulate frame
	transmission from the DUT.
	3. Monitor transmissions from the DUT.
Observable Results	a) The DUT should transmit the encoded version of tx_raw<99:0>.
for Part A	
Test Procedure	Part B: DUT transitions back to SEND_IDLES
Part B	4. While in the link up state established in the first part of this test, cease
	transmitting from the Transmit station for at least one second.
	a. This may be achieved by breaking the link to the DUT, or stopping all
	transmissions from the Transmit station.
	5. Establish a link with the DUT.
	NOT OK.
	6. Monitor transmissions from the DUT.
Observable Results	b) After training, the DUT should transmit IBLOCK T while in the SEND IDLES
for Part B	state.
Potential Issues	Cannot be performed if access to a GMII equivalent interface is not provided. or
	an appropriate loopback is not available.

4.4 GROUP 4: PCS Receive

This section verifies the integrity of the 1000BASE-T1 PCS Transmit state diagram.

Purpose	To verify that the DUT properly conforms to the receive bit order defined in [1]		
References	 [1] IEEE 802.3 – 2022 Figure 97 – 6 – PCS Receive bit ordering [2] IEEE 802.3 – 2022 Subclause 97.3.7.1 – Status 		
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) Optional access to LL block_lock (3.2306.6) & LH hi_rfer bit (3.2306.7)		
Discussion	Following training, the DUT should receive PAM3 symbols, demap and descramble them into RS-FEC frames, perform RS-FEC Decoding on these frames and group them into 81B blocks. When 45 81B blocks are aggregated, they are passed to the decoder function which decodes them into successive RGMII transfers. Block lock is indicated in MDIO register bit 3.2306.6, and high PHY frame error ratio (bi, rfer) is indicated in MDIO register bit 3.2306.7		
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station and the 1000BASE-T1 Monitor Station.		
Test Procedure Part A	 Part A: Correct Bit Ordering 1. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. b. When in SEND_N, send an Idle stream to the DUT with the correct bit ordering 2. If possible, read bit 3.2306.6 and 3.2306.7 at least twice. 3. By any method, observe if link_status = OK is indicated by the DUT. 		
Observable Results for Part A	a) The DUT should implement the received bit order as stated in [1] and establish synchronization and block lock. Report if the MDIO registers were read and properly indicate block lock and no hi_rfer. Note, reads of the Latching Low (LL) and Latching High (LH) MDIO registers may indicate no block_lock and hi_rfer initially, but subsequent reads should indicate block_lock and no hi_rfer.		
Test Procedure Part B	 Part B: Incorrect Bit Ordering 4. Attempt to establish a link with the DUT. a. Send from the Transmit station link signaling such training is completed and SEND_I is reached by the DUT. b. When the 1000BASE-T1 Test Station is in SEND_N, send an Idle stream to the DUT with the incorrect bit ordering. 5. If possible, after step 4(b) above, read bit 3.2306.6 & 3.2306.7 at least twice. 6. By any method, observe if <i>link_status</i> = OK is indicated by the DUT. 		
Observable Results for Part B	b) The DUT should not indicate <i>link_status</i> = OK. Report if the MDIO registers were read and properly indicate no block_lock and hi_rfer.		
Potential Issues	None.		

4.4.1 Test PCS.97.4.1 – Receive Bit Order

Purpose	To verify that the DUT employs the descrambler polynomial defined in equation 97 – 4 when configured as MASTER and equation 97 – 3 when configured as SLAVE.
References	 [1] IEEE 802.3 – 2022 Subclause 97.3.2.2.12 – PCS scrambler [2] IEEE 802.3 – 2022 Equation 97 – 3 – MASTER scrambler polynomial [3] IEEE 802.3 – 2022 Equation 97 – 4 – SLAVE scrambler polynomial [4] IEEE 802.3 – 2022 Figure 97 – 9 MASTER and SLAVE PCS scramblers
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)
Discussion	The 1000BASE-T1 PCS uses a side stream scrambler to eliminate the correlation transmit data. The descrambler function uses the same polynomials used in the scrambling function. The PCS descrambles the data stream to generate the correct sequence of symbols for decoding and generation of RXD<7:0> to the RGMII. The initial seed value for the MASTER and SLAVE scramblers are left up to the implementer with the exception that they shall be non-zero.
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station and the 1000BASE-T1 Monitor Station.
Test Procedure Part A	 Part A: Side stream descrambler polynomial - MASTER Configure the DUT as MASTER. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. Monitor the transmissions from the DUT.
Observable Results for Part A	 a) The DUT should use the descrambler polynomial defined in 97 – 4 when configured as MASTER.
Test Procedure Part B	 Part B: Side stream descrambler polynomial - SLAVE 4. Configure the DUT as SLAVE. 5. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 6. Monitor the transmissions from the DUT.
Observable Results for Part B	b) The DUT should use the descrambler polynomial defined in 97 – 3 when configured as SLAVE.
Potential Issues	Some devices may not allow configuration as MASTER or SLAVE, in which case only the supported configuration will be tested.

4.4.2 Test PCS.97.4.2 – Side Stream Descrambling

4.4.3 Test PCS.97.4.3 – Decoding

Purpose	To verify that the DUT correctly performs PAM3 to 3B2T mapping, RS-FEC decoding, and decodes 80B/81B blocks into successive RGMII transfers.
References	 [1] IEEE 802.3 - 2022 Subclause 97.3.2.2.4 - Transmission order [2] IEEE 802.3 - 2022 Figure 97 - 5 - PCS Transmit bit ordering [3] IEEE 802.3 - 2022 Figure 97 - 7 - PCS detailed transmit bit ordering [4] IEEE 802.3 - 2022 Subclause 97.3.2.2.5 - Block structure [5] IEEE 802.3 - 2022 Subclause 97.3.2.2.11 - RS-FEC encoder [6] IEEE 802.3 - 2022 Equation 97 - 1 [7] IEEE 802.3 - 2022 Subclause 97.3.2.2.13 - 3B2T to PAM3 [8] IEEE 802.3 - 2022 Table 97 - 1 GMII control code mapping [9] IEEE 802.3 - 2022 Table 97 - 2 - 3B2T Mapping to PAM3
Resource	1000BASE-T1 Test Station (refer to <u>Appendix B</u>)
Requirements	1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) (R)GMII Test Station (refer to <u>Appendix B</u>)
Discussion	The DUT should conform to the transmission order defined in [1], the transmit bit ordering defined in [2] and [3], the 81-bit block structure defined in [4], the RS- FEC encoding rules defined in [5], and the 3B2T to PAM3 mapping defined in [7] and [9].
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.
Test Procedure	Part A: DUT decodes valid 81B data blocks
Part A	1. Establish a link with the DUT.
	2. Transmit 81B blocks containing all data symbols to the DUT.
	3. Monitor and decode transmissions from the DUT.
	a. If available, monitor and decode transmissions on the DUT's RGMI
	receive path; otherwise, use the loopback described in (b) below.
	line back to the transmitter. The loopback must include the PCS, but not include the MAC.
Observable Results for Part A	a) The DUT should receive and decode all valid 81B data blocks.
Test Procedure	Part B: DUT decodes valid 81B control blocks
Part B	4. Establish a link with the DUT.
	 a. Send from the Transmit station signaling indicating rem_phy_ready = NOT_OK. This is accomplished by transmitting 81B control blocks containing only the control code 000 to the DUT.
	 Monitor and decode transmissions on the DUT's receive path. a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC.
	 6. Repeat steps 4 – 5 replacing the control code 000 with all other supported control codes defined in [8], as noted below: a. For control code 010, a valid link_status = OK is expected from the DUT.

	b. For control code 001, first establish a valid link (link_status = OK) then send error codes (control code 001).c. Control code 101 will not be sent in this version of the test suite. A					
	future update may include support for Low Power Idle (LPI) modes.					
Observable Results for Part B	b) The DUT should receive and decode all valid 81B control blocks.					
Test Procedure	Part C: DUT decodes 81B blocks with invalid pointer values					
Part C	7. Establish a link with the DUT.					
	8. Transmit 81B control blocks with an incorrect pointer value in the first 4 bits of the block.					
	9. Monitor and decode transmissions on the DUT's receive path.					
	 a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC 					
Observable Results	c) The DUT should receive and decode the invalid control blocks and transmit					
for Part C	should be observed to send one or more /E/ codes.					
Test Procedure	Part D: DUT decodes 81B blocks with invalid control codes					
Part D	10. Establish a link with the DUT.					
	 Transmit 81B control blocks with a control code value that is not defined in [8]. 					
	12. Monitor and decode transmissions on the DUT's receive path.					
	 a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. 					
	b. Enable a loopback which must loop received code groups from the					
	not include the MAC					
	13. Repeat steps 14 – 16 with all other undefined control code values.					
Observable Results	d) The DUT should receive and decode the invalid control blocks and transmit					
for Part D	error symbols on the RGMII receive path. If a loopback is enabled, the DUT should be observed to send one or more /E/ codes.					
Potential Issues	Test cannot be performed if access to a GMII equivalent interface is not provided, or an appropriate loopback is not available.					

4.5 GROUP 5: PCS Receive State Diagram

This section verifies the integrity of the 1000BASE-T1 PCS Receive state diagram.

Purpose	To verify that the DUT properly behaves in the RECEIVE_INIT state.					
References	[1] IEEE 802.3 – 2022 Figure 97 – 12 – PCS Receive state diagram					
	[2] IEEE 802.3 – 2022 Subclause 97.3.6.2.2 – Variables					
	[3] IEEE 802.3 – 2022 Subclause 97.3.6.3 - Messages					
Resource	1000BASE-T1 Test Station (refer to Appendix B)					
Requirements	1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)					
	(R)GMII Test Station (refer to Appendix B)					
Discussion	A 1000BASE-T1 device will enter the RECEIVE_INIT state upon a PCS Reset. At which time it will begin sending control blocks containing all Idle symbols up the RGMII receive path. Once the DUT has aggregated 9 aligned Reed-Solomon symbols into rx_coded, the DUT will transition to the RECEIVE_DATA state. As training must be completed and the SEND_N state reached before frame (non-Idle) data can be received, this test will simply validate that the Test Station can link with the DUT and reception verified.					
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.					
Test Procedure	Part A: DUT enters the RECEIVE INIT state					
Part A	1. Send no signaling to the DUT's 1000Base-T1 receiver (causing !block_lock)					
	2. Monitor the RGMII receive path on the DUT.					
Observable Results	a) The DUT should begin sending control blocks up the GMII-equivalent receive					
for Part A	path containing all Idle symbols in the RECEIVE_INIT state.					
Test Procedure	Part B: DUT transitions to the RECEIVE DATA state					
Part B	3. Send no signaling to the DUT's 1000Base-T1 receiver (causing !block_lock)					
	4. Establish a link with the DUT.					
	a. Send from the Transmit station valid link signaling such that					
	<i>link_status</i> = OK is indicated by the DUT.					
	b. As part of substep (a) above, the Transmit station will send a str					
	of valid Idle containing 9 aligned Reed-Solomon symbols to the DUT					
	5. Once link_status = OK, send a valid frame to the DUT.					
	6. Monitor the receive path on the DUT.					
	a. If available, monitor and decode transmissions on the DUT's RGMII					
	receive path; otherwise, use the loopback described in (b) below.					
	b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not the MAC.					
Observable Results	b) The DUT should enter the RECEIVE DATA state and transmit the frame on the					
for Part B	GMII-equivalent receive path to the MII test station, or if a loopback is in use,					
	the frame should be observed on the transmit path from the DUT.					
Potential Issues	In Part A, if access to a GMII equivalent interface is not provided, this test part					
	cannot be performed.					
	In Part B, this test cannot be performed if access to a GMII equivalent interface is					
	not provided, or an appropriate loopback is not available.					

4.5.1 **Test PCS.97.5.1 – RECEIVE_INIT**

4.5.2 Test PCS.97.5.2 – RECEIVE_DATA

Purpose	To verify that the DUT properly behaves in the RECEIVE DATA state.					
References	 [1] IEEE 802.3 – 2022 Figure 97 – 12 – PCS Receive state diagram [2] IEEE 802.3 – 2022 Subclause 97.3.2.3 – PCS Receive function [3] IEEE 802.3 – 2022 Subclause 97.3.6.2.2 – Variables [4] IEEE 802.3 – 2022 Subclause 97.3.6.3 – Messages [5] IEEE 802.3 – 2022 Subclause 97.3.7.1 – Status 					
Resource	1000BASE-T1 Test Station (refer to <u>Appendix B</u>)					
Requirements	1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)					
	(R)GMII Test Station (refer to <u>Appendix B</u>)					
Discussion	Uptional access to latching low block_lock (3.2306.6)					
Discussion	a geregated 9 aligned Reed-Solomon symbols into rx_coded. The DUT will then remain in the RECEIVE_DATA state until a PCS reset has occurred, the DUT will also return to the RECEIVE_INIT state if block_lock = FALSE or hi_rfer = TRUE.					
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.					
Test Procedure	Part A: DUT remains in the RECEIVE_DATA state					
Part A	1. Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s.					
	2. Establish a link with the DUI.					
	<i>link status</i> = OK is indicated by the DUT.					
	3. Continue to send frames interspersed with valid Idle to the DUT.					
	4. Monitor the RGMII receive path on the DUT.					
Observable Results	a) The DUT should receive and decode received blocks containing decoded					
Part A	symbols based on the received 81B vector while in the RECEIVE_DATA state,					
	observed either at the GMII equivalent, or by observing the same frame data					
	Printed on the loopback transmit path.					
Test Procedure	Part B: DUT returns to the RECEIVE_INIT state via hi_rfer = TRUE					
Fall D	6. Establish a link with the DUT.					
	a. Send from the Transmit station valid link signaling such that					
	<i>link_status</i> = OK is indicated by the DUT.					
	 Begin sending enough invalid Reed-Solomon frames such that the DUT sets hi_rfer = TRUE. 					
	 a. Send a repeating pattern of 16 consecutive invalid PHY frames followed by 72 valid PHY frames {to avoid setting block lock=FALSE}. 					
	8. Monitor the receive path on the DUT and, if accessible, the latching-high					
	hi_rfer register bit (3.2306.7).					
	a. If available, monitor and decode transmissions on the DUT's RGMII					
	receive path; otherwise, use the loopback described in (b) below.					
	line back to the transmitter. The loopback must include the PCS, but					
	not include the MAC.					
Observable Results	b) The DUT should emit at least one /E/ and up to 7200 /E/ bytes before					
Part B	entering the RECEIVE_INIT state when hi_rfer = TRUE and transmit control					

	blocks containing all Idle symbols up the GMII-equivalent receive path. If observed via loopback, at least one /E/ should be observed transmitted from the DUT.			
Test Procedure Part C	 Part C: DUT returns to the RECEIVE_INIT state via block_lock = FALSE 9. Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s. 10. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 11. Begin sending enough invalid Reed-Solomon frames such that the DUT sets block_lock = FALSE. a. 40 consecutive invalid PHY frames should be sufficient.[2] 12. Monitor the receive path on the DUT and, if accessible, the latching-low block_lock register bit (3.2306.6). a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line heights the two paths the two paths and paths. 			
Observable Results Part C	c) The DUT should enter the RECEIVE_INIT state when block_lock = FALSE and transmit control blocks containing all Idle symbols up the RGMII receive path.			
Potential Issues	Test cannot be performed if access to a GMII equivalent interface is not provided, or an appropriate loopback is not available.			

4.6 GROUP 6: RFER Monitor State Diagram

This section verifies the integrity of the 1000BASE-T1 RFER monitor state diagram.

Purpose	To verify that the DUT properly follows the RDER monitor state diagram when connected to the Transmit station with no intentional errors created.				
References	 [1] IEEE 802.3 - 2022 Figure 97 - 13 - RFER monitor state diagram [2] IEEE 802.3 - 2022 Subclause 97.3.6.2.2 - Variables [3] IEEE 802.3 - 2022 Subclause 97.3.6.2.4 - Counters [4] IEEE 802.3 - 2022 Subclause 97.3.6.3 - Messages [5] IEEE 802.3 - 2022 Subclause 97.3.7.1 - Status 				
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) Management access to <i>link_status</i> and/or led indication of <i>link_status</i> Optional access to latching-high hi_rfer bit (3.2306.7)				
Discussion	A 1000BASE-T1 device will enter the RFER_MT_INIT state upon a PCS Reset. At which time it will set hi_rfer = FALSE. The DUT will also enter the RFER_MT_INIT state when block_lock = FALSE. The DUT will then transition immediately to the INIT_CNT state. From there, the DUT will continue to examine received PHY Frames (RX_FRAME) and if no more than 15 out of 88 PHY Frames have errors, then hi_rfer will not be set TRUE and the link will remain up.				
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station and the 1000BASE-T1 Monitor Station.				
Test Procedure Part A	 Part A: DUT operates with Transmit station below the hi_rfer threshold. 1. Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s. 2. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 3. If available, read bit 3.2306.7. 4. Continue to send valid link signaling for 10 seconds, or as along as tooling allows, if less than 10 seconds. 5. If available, read bit 3.2306.7. 				
Observable Results for Part A	 a) If the DUT allows access to MDIO registers, the DUT should have 3.2306.7 = 0. And should remain at 0 throughout normal link from the Transmit station. The DUT should maintain link_status=OK after step 2 through the end of this test. 				
Potential Issues	If the DUT and the Transmit station cannot maintain a low BER connection, the validity of any test results from this test suite should be questioned until any underlying PMA issues are resolved and a low BER is observed in this test.				

4.6.1 Test PCS.97.6.1 – Verify Operation without high BER

Purpose To verify that the DUT properly follows the RFER monitor state diagram when receiving a low rate of invalid PHY frames. [1] IEEE 802.3 – 2022 Figure 97 – 13 – RFER monitor state diagram References [2] IEEE 802.3 - 2022 Subclause 97.3.6.2.2 - Variables [3] IEEE 802.3 – 2022 Subclause 97.3.6.2.4 – Counters [4] IEEE 802.3 – 2022 Subclause 97.3.6.3 – Messages [5] IEEE 802.3 - 2022 Subclause 97.3.7.1 - Status 1000BASE-T1 Test Station (refer to Appendix B) Resource Requirements 1000BASE-T1 Monitor Station (refer to Appendix B) (R)GMII Test Station (refer to Appendix B) Management access to *link status* and/or led indication of *link status* Optional access to latching-high hi rfer bit (3.2306.7) & RFER count (3.2306.5:0) Discussion A 1000BASE-T1 device will monitor its link BER via the RFER monitor state diagram. If more than 15 errored PHY frames are received within an 88 PHY frame window, then hi rfer will be asserted and the link will drop. This test validates that the Transmit station can provide a low rate (<<15 for every 88) of errored PHY frames without causing the link to be dropped Test Setup Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station. Test Procedure Part A: DUT maintains link when BER is below the error threshold. 1. Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s. Part A 2. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that *link status* = OK is indicated by the DUT. 3. If available, read bit 3.2306.7. 4. Continue to send link signaling for 10 seconds, or as along as tooling allows, if less than 10 seconds. Modify the link signaling as noted below: a. Send at least one invalid PHY frame, and if possible, send one invalid PHY frame every 88 PHY frames. 5. Monitor the receive path on the DUT and, if accessible, the latching-high hi rfer register bit (3.2306.7) and 3.2306.5:0. a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC. Observable Results a) In step 3, the DUT should indicate link status = OK, and 3.2306.7 = 0 if for Part A accessible. In step 5, if accessible, 3.2306.7 should still be 0 and the link status should still be OK on the DUT. If accessible, in step 5, the RFER count (3.2306.5:0) should be non-zero, and if >63 invalid PHY frames have been sent, the value returned should be 0b111111. On the GMII equivalent, if available, /E/ codes should be seen, for each error'ed PHY frame sent (450 /E/ codes per errored PHY frame), or equivalent in encoded transmissions from the DUT if a loopback is used. Potential Issues None. {If no MDIO, GMII or loopback is available, then link status will be

4.6.2 Test PCS.97.6.2 – Verify Operation in presence of low forced BER

monitored in this test}

4.6.3 Test PCS.97.6.3 – HI_RFER not set when below limits

Purpose	To verify that the DLIT properly implements REER_CNT_LIMIT and					
i uipose	RFRX_CNT_LIMIT values.					
References	[1] IEEE 802.3 – 2022 Figure 97 – 13 – RFER monitor state diagram					
	[2] IEEE 802.3 – 2022 Subclause 97.3.6.2.2 – Variables					
	[3] IEEE 802.3 – 2022 Subclause 97.3.6.2.4 – Counters					
	[4] IEEE 802.3 – 2022 Subclause 97.3.6.3 – Messages					
	[5] IEEE 802.3 – 2022 Subclause 97.3.7.1 – Status					
Resource	1000BASE-T1 Test Station (refer to <u>Appendix B</u>)					
Requirements	1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>)					
	(R)GMII Test Station (refer to <u>Appendix B</u>)					
	Management access to <i>link_status</i> and/or led indication of <i>link_status</i>					
	Optional access to latching-high hi_rfer bit (3.2306.7) & RFER_count (3.2306.5:0)					
Discussion	A 1000BASE-T1 device will monitor its received BER and set hi_rfer if more than					
	15 PHY frames are received in error within a window of 88 PHY frames. This test					
	will validate that when only 15 errored PHY frames are received in a window of 88					
	PHY frames, the DUT will not set hi_rfer. Other tests (eg: 97.6.4 and 97.6.5) will					
	verify that hi_rfer is set TRUE when 16 errored PHY frames are received within a					
	window of 88 PHY frames.					
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor					
	station and, if a suitable interface is exposed, the (R)GMII Test Station.					
Test Procedure	Part A: DUT maintains link when BER is just below the error threshold.					
Part A	1. Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s.					
	2. Establish a link with the DUT.					
	a. Send from the Transmit station valid link signaling such that					
	<i>link_status</i> = OK is indicated by the DUT.					
	3. If available, read bit 3.2306.7.					
	4. Begin sending a sequence of invalid Reed-Solomon frames such that the DUT keeps bi rfer = EALSE					
	a Send a repeating pattern of 15 consecutive invalid PHV frames					
	followed by 73 valid PHY frames.					
	5. Monitor the receive path on the DUT and, if accessible, the latching-high					
	hi rfer register bit (3.2306.7) and 3.2306.5:0.					
	a. If available, monitor and decode transmissions on the DUT's RGMII					
	receive path; otherwise, use the loopback described in (b) below.					
	b. Enable a loopback which must loop received code groups from the					
	line back to the transmitter. The loopback must include the PCS, but					
	not include the MAC.					
Observable Results	a) In step 3, the DUT should indicate link status = OK, and 3,2306.7 = 0, if					
for Part A	accessible. In step 5, if accessible, 3.2306.7 should still be 0 and the					
	link status should still be OK on the DUT. If accessible, in step 5, the					
	RFER count (3.2306.5:0) should be non-zero, and if >63 invalid PHY frames					
	have been sent, the value returned should be 0b111111. On the GMI					
	equivalent, if available, /E/ codes should be seen, for each error'ed PHY frame					
	sent (450 /E/ codes per errored PHY frame). or equivalent in encoded					
	transmissions from the DUT if a loopback is used.					

Potential Issues	None. {If no MDIO, GMII or loopback is available, then link_status will be
	monitored in this test}

4.6.4 Test PCS.97.6.4 – HI_RFER set when too many errors in window

Purpose	To verify that the DUT properly implements RFRX_CNT_LIMIT as 88, as observed by seeing hi_rfer be set when 15 consecutive errors are sent in a repeating patten, spaced by only 72 valid PHY frames.				
References	 [1] IEEE 802.3 - 2022 Figure 97 - 13 - RFER monitor state diagram [2] IEEE 802.3 - 2022 Subclause 97.3.6.2.2 - Variables [3] IEEE 802.3 - 2022 Subclause 97.3.6.2.4 - Counters [4] IEEE 802.3 - 2022 Subclause 97.3.6.3 - Messages [5] IEEE 802.3 - 2022 Subclause 97.3.7.1 - Status 				
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) (R)GMII Test Station (refer to <u>Appendix B</u>) Management access to <i>link_status</i> and/or led indication of <i>link_status</i> Optional access to latching-high hi_rfer bit (3.2306.7) & RFER_count (3.2306.5:0)				
Discussion	A 1000BASE-T1 device will monitor its received BER and set hi_rfer if more than 15 PHY frames are received in error within a window of 88 PHY frames. The previous test (97.6.3) verifies that a pattern of 15 invalid PHY frames followed by 73 PHY frames does not cause hi_rfer to be set. This test will validate that the RFRX_CNT_LIMIT is not improperly set at 87, by sending one less valid PHY frame in the pattern sent by the previous test, and expecting hi rfer to be set.				
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.				
Test Procedure Part A	 Part A: DUT breaks link when BER is just above the error threshold. 1. Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s. 2. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. 3. If available, read bit 3.2306.7. 4. Begin sending a sequence of invalid Reed-Solomon frames such that the DUT keeps hi_rfer = TRUE. a. Send a repeating pattern of 15 consecutive invalid PHY frames followed by 72 valid PHY frames {violating the RFRX_CNT_LIMIT but avoids setting block_lock=FALSE}. 5. Monitor the receive path on the DUT and, if accessible, the latching-high hi_rfer register bit (3.2306.7) and 3.2306.5:0. a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC. 				
Observable Results for Part A	a) The DUT should be observed to either SEND_Z or SEND_S following receipt of the pattern sent in step 4. The DUT should have bit 3.2306.7 set to 1. Note: The detection of hi_rfer=TRUE will cause the DUT to set pcs_status=NOT_OK, which will cause loc_phy_ready=NOT_OK which will cause the Link Monitor SM to transition to LINK_DOWN and set link_status=FAIL, which will then cause the PHY Link Synchronization SM to enter TRANSMIT_DISABLE and the DUT is then expected to emit either SEND_Z (if Slave) or SEND_S (if Master).				

Potential Issues	None. {If no MDIO, GMII or loopback is available, then link_status will be
	monitored in this test}

4.6.5 Test PCS.97.6.5 – HI_RFER set with consecutive errors

Purpose	To verify that the DUT properly enters the HI_RFER state after receiving 16 consecutive errors.				
References	 [1] IEEE 802.3 - 2022 Figure 97 - 13 - RFER monitor state diagram [2] IEEE 802.3 - 2022 Subclause 97.3.6.2.2 - Variables [3] IEEE 802.3 - 2022 Subclause 97.3.6.2.4 - Counters [4] IEEE 802.3 - 2022 Subclause 97.3.6.3 - Messages [5] IEEE 802.3 - 2022 Subclause 97.3.7.1 - Status [6] IEEE 802.3 - 2022 Subclause 45.2.3.71 - 1000BASE-T1 PCS status 2 register 				
Resource Requirements	1000BASE-T1 Test Station (refer to <u>Appendix B</u>) 1000BASE-T1 Monitor Station (refer to <u>Appendix B</u>) (R)GMII Test Station (refer to <u>Appendix B</u>) Management access to <i>link_status</i> and/or led indication of <i>link_status</i> Optional access to latching-high hi_rfer bit (3.2306.7)				
Discussion	A 1000BASE-T1 device will enter the HI_RFER state from the RFER_BAD_RF state when the rfer_cnt counter reaches a value of 16. The DUT will then set hi_rfer = TRUE. The DUT will then transition to the INC_CNT2 state if it receives a Reed- Solomon frame while rfrx_cnt < 88. If the rfrx_cnt counter = 88, the DUT will transition to the INIT_CNT state where both the rfrx_cnt and rfer_cnt counters are initialized to 0.				
Test Setup	Connect the DUT to the 1000BASE-T1 Test Station, the 1000BASE-T1 Monitor station and, if a suitable interface is exposed, the (R)GMII Test Station.				
Test Procedure Part A	 Part A: DUT enters the HI_RFER state Perform a PCS Reset on the DUT, or break link with the DUT for ~1 s. Establish a link with the DUT. a. Send from the Transmit station valid link signaling such that link_status = OK is indicated by the DUT. Begin sending enough invalid Reed-Solomon frames such that the DUT sets hi_rfer = TRUE. a. Send a repeating pattern of 16 consecutive invalid PHY frames followed by 72 valid PHY frames {to avoid setting block_lock=FALSE}. Monitor the receive path on the DUT and, if accessible, the latching-high hi_rfer register bit (3.2306.7). a. If available, monitor and decode transmissions on the DUT's RGMII receive path; otherwise, use the loopback described in (b) below. b. Enable a loopback which must loop received code groups from the line back to the transmitter. The loopback must include the PCS, but not include the MAC. 				
Observable Results for Part A	a) The DUT should be observed to either SEND_Z or SEND_S following receipt of the pattern sent in step 4. The DUT should have bit 3.2306.7 set to 1. Note: The detection of hi_rfer=TRUE will cause the DUT to set pcs_status=NOT_OK, which will cause loc_phy_ready=NOT_OK which will cause the Link Monitor SM to transition to LINK_DOWN and set link_status=FAIL, which will then cause the PHY Link Synchronization SM to enter TRANSMIT_DISABLE and the DUT is then expected to emit either SEND_Z (if Slave) or SEND_S (if Master).				
Potential Issues	None. {If no MDIO, GMII or loopback is available, then link_status will be monitored in this test}				

5 Appendices

5.1 Appendix A – Testing Devices Without RGMII Access

Purpose: To detail the tests that can be performed on a device without RGMII (or any equivalent GMII), access and to detail the modifications to the Procedures and Observable Results.

Discussion: The amount of tests that can be performed on a device without RGMII access is reduced. Typically, the only observation points that will be available packet counters or packets that are forwarded through another port on the DUT. Also, the only transmissions available from the DUT will be Training, Idle, and packets. The following table lists all tests and if they are possible with or without modification. The necessary modifications are detailed in the following sections.

Test Name	Test Number	No Modification Required	Requires Modification	Cannot be Tested
	Group 1: PCS Fun	ctions		
PCS Reset	Test 97.1.1	All Parts		
	Group 2: PCS Tran	nsmit		
Transmit Encoding	Tests 97.2.1	All Parts		
Side Stream Scrambling	Tests 97.2.2	All Parts		
Control Codes	Tests 97.2.3	a,b		С
Group	3: PCS Transmit St	ate Diagram		
DISABLE_TRANSMITTER	Test 97.3.1	All Parts		
SEND_IDLES	Test 97.3.2	All Parts		
SEND_DATA	Test 97.3.3	All Parts		
	Group 4: PCS Rec	eive		
Receive Bit Order	Test 97.4.1	All Parts		
Side Stream Descrambling	Test 97.4.2	All Parts		
Decoding	Test 97.4.3	All Parts		
Group	5: PCS Receive Sta	ate Diagram		
RECEIVE_INIT	Test 97.5.1	b		а
RECEIVE_DATA	Test 97.5.2	All Parts		
Group 6: RFER Monitor State Diagram`				
RFER_MT_INIT	Test 97.6.1	All Parts		
INIT_CNT	Test 97.6.2	All Parts		
INC_CNT	Test 97.6.3	All Parts		
RFER_BAD_RF	Test 97.6.4	All Parts		
HI_RFER	Test 97.6.5	All Parts		
GOOD_RFER	Test 97.6.6	All Parts		

Table A. 1 - Tests that are possible without RGMII access

At this time, all proposed test procedures incorporate GMII (or equivalent) procedures, and if not available, may require a line-side loopback (one that would copy data received from the line through the PCS Receiver back to the PCS Transmitter). Such a loopback must be between the PCS and any MAC present in the DUT. A loopback at the GMII is acceptable but may have timing implications.

5.2 Appendix B – Test Stations

Purpose: To provide the requirements of the test stations used during 1000BASE-T1 PHY Control testing.

Discussion:

Two to Three test stations will be required to perform all tests that are specified in this document, depending on DUT capabilities.

The **1000BASE-T1 Test Station** emulates a compliant 1000BASE-T1 PHY, with testability features to perform controlled negative test cases (eg: cease transmission, keep loc_rcvr_status indications as NOT_OK, etc) as required by the tests in this test plan. The 1000BASE-T1 Test Station also has external triggering capability to align events observed by the 1000BASE-T1 Test Station with those observed by the 1000BASE-T1 Monitor Station.

The **1000BASE-T1 Monitor Station** would typically consist of an oscilloscope and software to capture and decode the transmissions from the DUT. The DUT will connect through the Line Tap as specified in appendix 5.2 B. The software will download the capture from the oscilloscope and decode the symbols, using knowledge of the 1000BASE-T1 encoding.

The **(R)GMII Test Station** is required for some tests, if the DUT exposes a supported interface (typically RGMII, following the Samtec connector and pinout employed by the 1000BASE-T1 Interoperability Test Plan). While some tests can be performed with either loopback enabled, or the (R)GMII Test Station, use of the (R)GMII Test Station is generally preferred unless indicated otherwise in the specific test.

Figures A - 1 and A - 2 below show the typical test setups with a DUT with an exposed (R)GMII interface in Figure A - 1, or configured with a line-side loopback, as shown in Figure A - 2.

Figure A - 1: 1000BASE-T1 Test Setup with RGMII Test Station

Figure A - 2: 1000BASE-T1 Test Setup with Loopback

Figure A – 3 shows the potential to test a multi-port DUT that has no exposed RGMII interface. Any equivalent setup is acceptable (eg: two 1000BASE-T1 Test Stations, substituted for the compliant 1000BASE-T PHY and (R)GMII Test Station). The test plan does not explicitly refer to this test setup but multi-port DUTs (with 2 or more ports operating at 1000 Mbps) can be tested by such as setup where the test plan's (R)GMII Test Station is driving traffic into (or monitoring traffic from) the 1000Mbps port not under test.

Figure A - 3: 1000BASE-T1 Test Setup with multi-port 1000BASE-T1 (eg: no exposed RGMII)

5.3 Appendix C – Line Tap

Purpose: To provide the requirements of a line tap that will be used, in conjunction with an oscilloscope, to capture the transmissions from the DUT.

Discussion:

Any directional line tap capable of providing a low insertional loss impedance matched channel connection with at least 500MHz bandwidth has been shown to be functional for short reach (~2 meter) connections between the Test Station and DUT. Additional bandwidth is recommended. A minimum of 8GSps sampling with a 10bit oscilloscope is recommended. Care should be taken to ensure cabled connections to the oscilloscope are on equal-length cables and that the directional taps do not provide substantial asymmetry in monitored paths.

Delays from the Line-Tap to the DUT should be considered in those tests that may be impacted by such propagation delays.