

Sleep/Wake-Up Electrical Interface Specification

Sleep/Wake-up Electrical Interface Specification for Automotive Ethernet

Version	1.0
Date	2025/07/07
Status	Final
Restriction Level	Public

VERSION AND RESTRICTION HISTORY OF THIS DOCUMENT

VERSION	DESCRIPTION	RESTRICTION LEVEL	DATE
0.1	First Draft Version	OPEN Members Only	2022/08/19
0.2	2 nd Draft version with integration of 10Base-T1S electrical interface	OPEN Members Only	2024/01/31
0.3	 3rd Draft version based on review feedback from v0.2 Separate T_PowerSupplyStable and T_Initialization from TWU_Frowarding into a dedicated section for clarity 	OPEN Members Only	2024/08/01
0.4	4 th Draft version based on review feedback from v0.3	OPEN Members Only	2024/10/24
0.5	5 th Draft version based on review feedback from v0.4	OPEN Members Only	2024/12/14
0.6	 6th Draft Version based on review feedback from v0.5 Update description for T_Initialization + T_PowerSupply and TWU_WAKEIO Update format to new template 	OPEN Members Only	2025/02/27
1.0	Revision change for public release	Public	2025/07/07

CHAIR AND VICE CHAIR

CHAIR	NAME	ORGANIZATION
OPEN Alliance TC10 Chair	Cliff (Hon Wai) Fung	Marvell Semiconductor, Inc.
OPEN Alliance TC10 Vice Chair	Mehmet Tazebay	Broadcom Corporation

EDITOR

NAME	ORGANIZATION
Cliff (Hon Wai) Fung	Marvell Semiconductor, Inc.

CONTRIBUTORS

NAME	ORGANIZATION
Philip Axer	AXONNE INC
Wei Lou	Broadcom Corporation
Dongdong Yu	Mercedes-Benz Research & Development North America, Inc.

Table of Contents

VERSION AND RESTRICTION HISTORY OF THIS DOCUMENT	2
CHAIR AND VICE CHAIR	2
EDITOR	2
CONTRIBUTORS	2
OPEN SPECIFICATION OWNERSHIP AND USAGE RIGHTS	5
RIGHTS AND USAGE RESTRICTIONS SPECIFIC TO OPEN ALLIANCE MEMBERS	5
Rights and Usage Restrictions Specific to Non-members of OPEN Alliance	5
TERMS APPLICABLE TO BOTH MEMBERS AND NON-MEMBERS OF OPEN ALLIANCE	
Patents, Trademarks, and other Rights:	6
Disclaimers and Limitations of Liability:	6
Compliance with Laws and Regulations:	6
Automotive Applications Only:	7
Right to Withdraw or Modify:	7
INTRODUCTION	8
ABBREVIATION/SYMBOLS	8
1 SCOPE	10
2 TERMS AND DEFINITIONS	10
3 WAKEUP/SLEEP ELECTRICAL INTERFACE	11
3.1 Ethernet Transceiver electrical interface type	13 13 13
4 POWER CONSUMPTION	14
5 TIMING BEHAVIOR	14
5.1 TWU_Forwarding	14
5.2 T_PowerSupply_Stable and T_Initialization	14
5.3 TWU_WakeIO	15
6 SERVICE PRIMITIVES AND INTERFACES	15

Sleep/Wake-Up Electrical Interface Specification

6.1 Sleep.request	15
6.2 SleepForce.request1	15
6.3 Sleep.indication1	15
6.4 SleepFail.indication1	15
6.5 SleepAbort.request1	15
6.6 Wakeup.request1	15
6.7 Wakeup.indication1	15
6.8 Inhibit.indication1	16
6.9 WakeupForward.indication1	16
6.10 WakeupForward.request1	16

OPEN Alliance Specification Copyright Notice and Disclaimer

OPEN SPECIFICATION OWNERSHIP AND USAGE RIGHTS

As between OPEN Alliance and OPEN Alliance Members whose contributions were incorporated in this OPEN Specification (the "Contributing Members"), the Contributing Members own the worldwide copyrights in and to their given contributions. Other than the Contributing Members' contributions, OPEN Alliance owns the worldwide copyrights in and to compilation of those contributions forming this OPEN Specification. For OPEN Alliance Members (as that term is defined in the OPEN Alliance Bylaws), OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Intellectual Property Rights Policy and the additional applicable terms below. For non-members of OPEN Alliance, OPEN Alliance permits the use of this OPEN Specification on the terms in the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional applicable terms below. The usage permissions referenced and described here relate only to this OPEN Specification and do not include or cover a right to use any specification published elsewhere and referred to in this OPEN Specification. By using this OPEN Specification, you hereby agree to the following terms and usage restrictions:

RIGHTS AND USAGE RESTRICTIONS SPECIFIC TO OPEN ALLIANCE MEMBERS

FOR OPEN ALLIANCE MEMBERS ONLY: In addition to the usage terms and restrictions granted to Members in the OPEN Alliance Intellectual Property Rights Policy, Members' use of this OPEN Specification is subject this Copyright Notice and Disclaimer. Members of OPEN Alliance have the right to use this OPEN Specification solely (i) during the term of a Member's membership in OPEN Alliance and subject to the Member's continued membership in good standing in OPEN Alliance; (ii) subject to the Member's continued compliance with the OPEN Alliance governance documents, Intellectual Property Rights Policy, and the applicable OPEN Alliance Promoter or Adopter Agreement, as applicable; and (iii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the Member's products and services, but only so long as Member does not distribute, publish, display, or transfer this OPEN Specification to any third party, except as expressly set forth in Section 11 of the OPEN Alliance Intellectual Property Rights Policy. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in Member's products and services, Member shall not modify, alter, combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If Member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in Member's products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such Member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, Member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance's prior written consent. All rights not expressly granted to Member in the OPEN Alliance Intellectual Property Rights Policy are reserved;

Rights and Usage Restrictions Specific to Non-members of OPEN Alliance

FOR NON-MEMBERS OF OPEN ALLIANCE ONLY: Use of this OPEN Specification by anyone who is not a Member in good standing of OPEN Alliance is subject to your agreement to the OPEN Alliance Specification License Agreement (available here: http://www.opensig.org/Automotive-Ethernet-Specifications/) and the additional terms in this Copyright Notice and Disclaimer. Non-members have the right to use this OPEN Specification solely (i) subject to the non-member's continued compliance with the OPEN Alliance Specification License Agreement; and (ii) for internal business purposes and solely to use the OPEN Specification for implementation of this OPEN Specification in the non-member's products and services, but only so long as non-member does not distribute, publish, display, or transfer this OPEN Specification to any third party, unless and only to the extent expressly set forth in the OPEN Alliance Specification License Agreement. Except and only to the extent required to use this OPEN Specification internally for implementation of this OPEN Specification in non-member's products and services, non-member shall not modify, alter,

combine, delete portions of, prepare derivative works of, or create derivative works based upon this OPEN Specification. If non-member creates any modifications, alterations, or other derivative works of this OPEN Specification as permitted to use the same internally for implementation of this OPEN Specification in non-member's products and services, all such modifications, alterations, or other derivative works shall be deemed part of, and licensed to such non-member under the same restrictions as, this OPEN Specification. For the avoidance of doubt, non-member shall not include all or any portion of this OPEN Specification in any other technical specification or technical material, product manual, marketing material, or any other material without OPEN Alliance's prior written consent. All rights not expressly granted to non-member in the OPEN Alliance Specification License Agreement are reserved.

TERMS APPLICABLE TO BOTH MEMBERS AND NON-MEMBERS OF OPEN ALLIANCE

Patents, Trademarks, and other Rights:

OPEN Alliance has received no Patent Disclosure and Licensing Statements related to this OPEN Specification. Therefore, this OPEN Specification contains no specific disclaimer related to third parties that may require a patent license for their Essential Claims. Having said that, the receipt of this OPEN Specification shall not operate as an assignment of or license under any patent, industrial design, trademark, or other rights as may subsist in or be contained in or reproduced in this OPEN Specification; and the implementation of this OPEN Specification could require such a patent license from a third party. You may not use any OPEN Alliance trademarks or logos without OPEN Alliance's prior written consent.

Disclaimers and Limitations of Liability:

THIS OPEN SPECIFICATION IS PROVIDED ON AN "AS IS" BASIS, AND ALL REPRESENTATIONS, WARRANTIES, AND GUARANTEES, EITHER EXPLICIT, IMPLIED, STATUTORY, OR OTHERWISE, ARE EXCLUDED AND DISCLAIMED UNLESS (AND THEN ONLY TO THE EXTENT THEY ARE) MANDATORY UNDER LAW. ACCORDINGLY, OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS OR WARRANTIES OR GUARANTEES WITH REGARD TO THIS OPEN SPECIFICATION OR THE INFORMATION (INCLUDING ANY SOFTWARE) CONTAINED HEREIN. OPEN ALLIANCE AND ALL CONTRIBUTING MEMBERS HEREBY EXPRESSLY DISCLAIM ANY AND ALL SUCH EXPRESS, IMPLIED, STATUTORY, AND ALL OTHER REPRESENTATIONS, WARRANTIES, AND GUARANTEES, INCLUDING WITHOUT LIMITATION ANY AND ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, TITLE, NON-INFRINGEMENT OF OR ABSENCE OF THIRD PARTY RIGHTS, AND/OR VALIDITY OF RIGHTS IN THIS OPEN SPECIFICATION; AND OPEN ALLIANCE AND THE CONTRIBUTING MEMBERS MAKE NO REPRESENTATIONS AS TO THE ACCURACY OR COMPLETENESS OF THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN. WITHOUT LIMITING THE FOREGOING, OPEN ALLIANCE AND/OR CONTRIBUTING MEMBERS HAS(VE) NO OBLIGATION WHATSOEVER TO INDEMNIFY OR DEFEND YOU AGAINST CLAIMS RELATED TO INFRINGEMENT OR MISAPPROPRIATION OF INTELLECTUAL PROPERTY RIGHTS. OPEN ALLIANCE AND CONTRIBUTING MEMBERS ARE NOT, AND SHALL NOT BE, LIABLE FOR ANY LOSSES, COSTS, EXPENSES, OR DAMAGES OF ANY KIND WHATSOEVER (INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE, AND/OR EXEMPLARY DAMAGES) ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS OPEN SPECIFICATION OR ANY INFORMATION HEREIN. NOTHING IN THIS DOCUMENT OPERATES TO LIMIT OR EXCLUDE ANY LIABILITY FOR FRAUD OR ANY OTHER LIABILITY WHICH IS NOT PERMITTED TO BE EXCLUDED. OR LIMITED BY OPERATION OF LAW.

Compliance with Laws and Regulations:

NOTHING IN THIS DOCUMENT OBLIGATES OPEN ALLIANCE OR CONTRIBUTING MEMBERS TO PROVIDE YOU WITH SUPPORT FOR, OR RELATED TO, THIS OPEN SPECIFICATION OR ANY IMPLEMENTED PRODUCTS OR SERVICES. NOTHING IN THIS OPEN SPECIFICATION CREATES ANY WARRANTIES OR GUARANTEES, EITHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, REGARDING ANY LAW OR REGULATION. OPEN ALLIANCE AND CONTRIBUTING MEMBERS EXPRESSLY DISCLAIM ALL LIABILITY, INCLUDING WITHOUT LIMITATION, LIABILITY FOR NONCOMPLIANCE WITH LAWS, RELATING TO USE OF THE OPEN SPECIFICATION OR INFORMATION CONTAINED HEREIN. YOU ARE SOLELY RESPONSIBLE FOR THE COMPLIANCE OF IMPLEMENTED PRODUCTS AND SERVICES WITH ANY SUCH LAWS AND REGULATIONS, AND FOR OBTAINING ANY AND ALL REQUIRED AUTHORIZATIONS, PERMITS, AND/OR LICENSES FOR IMPLEMENTED PRODUCTS

AND SERVICES RELATED TO SUCH LAWS AND REGULATIONS WITHIN THE APPLICABLE JURISDICTIONS. IF YOU INTEND TO USE THIS OPEN SPECIFICATION, YOU SHOULD CONSULT ALL APPLICABLE LAWS AND REGULATIONS. COMPLIANCE WITH THE PROVISIONS OF THIS OPEN SPECIFICATION DOES NOT CONSTITUTE COMPLIANCE TO ANY APPLICABLE LEGAL OR REGULATORY REQUIREMENTS. IMPLEMENTERS OF THIS OPEN SPECIFICATION ARE SOLELY RESPONSIBLE FOR OBSERVING AND COMPLYING WITH THE APPLICABLE LEGAL AND REGULATORY REQUIREMENTS. WITHOUT LIMITING THE FOREGOING, YOU SHALL NOT USE, RELEASE, TRANSFER, IMPORT, EXPORT, AND/OR RE-EXPORT THIS OPEN SPECIFICATION OR ANY INFORMATION CONTAINED HEREIN IN ANY MANNER PROHIBITED UNDER ANY APPLICABLE LAWS AND/OR REGULATIONS, INCLUDING WITHOUT LIMITATION U.S. EXPORT CONTROL LAWS.

Automotive Applications Only:

Without limiting the foregoing disclaimers or limitations of liability in any way, this OPEN Specification was developed for automotive applications only. This OPEN Specification has neither been developed, nor tested for, non-automotive applications.

Right to Withdraw or Modify:

OPEN Alliance reserves the right to (but is not obligated to) withdraw, modify, or replace this OPEN Specification at any time, without notice.

© 2024 OPEN Alliance. This document also contains contents, the copyrights of which are owned by third parties who are OPEN Alliance Contributing Members. Unauthorized Use Strictly Prohibited. All Rights Reserved.

INTRODUCTION

This specification defines a standard set of service primitive and physical interface provided by the ISO/OSI layer 1 (PHY) and supporting a controlled link shutdown and a fast global wake-up within an Ethernet network. Higher layers like the network management can access those service primitives to realize partial networking, where selected parts of a network are inactive. The coordination of switching off selected nodes of a network is handled by the network management and is not part of this specification. This partial networking concept relying on selective link shutdown and fast global wake-up is especially suited for automotive Ethernet networks.

The IEEE 802.3 specification does not define mechanisms for controlled link shut-down and wake-up. Therefore the new service primitives defined in this specification can be regarded as a supplement to the IEEE 802.3 specification to define the physical interface as well as timing behavior in response to the physical interface.

ABBREVIATION/SYMBOLS

CSMA/CD	Carrier Sense Multiple Access with Collision Detection
DME	Differential Manchester Encoding
DUT	Device Under Test
LPS	Low Power Sleep
MAC	Media Access Control
MDI	Media Dependent Interface
MII	Media Independent Interface
PCS	Physical Coding Sublayer
PHY	Physical Layer
PLCA	Physical Layer Collision Avoidance
PM	Power Management
PMA	Physical Medium Attachment
PMIC	Power Management Integrated Circuit
pt-pt	Point to point
INH	Inhibit
I/O	Input/Output
ОТР	One Time Programmable
RS	Reconciliation Sublayer

SMI	Serial Management Interface
SoC	System on Chip
VBAT	Battery Voltage
WUP	Wake-Up Pulse
WUS	Wake-Up Sleep
WUT	Wake-Up Tone
+	May indicate either the arithmetical sum operation or the logical OR function
*	May indicate either the arithmetical multiply operation or the logical AND function
	I .

1 SCOPE

The following are the objectives of this Sleep/Wake-up Electrical Interface specification:

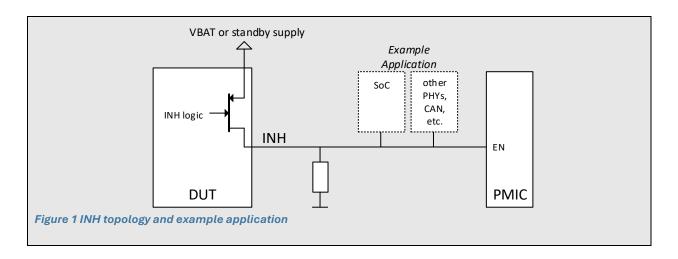
- a) Comply with the CSMA/CD MAC
- b) Comply with the specifications for the xMII (MII, RMII, RGMII etc.)
- c) Support global network wake-up
- d) Support wake-up process completely covered in ISO/OSI layer 1
- e) Support controlled link shutdown to deactivate selective parts of network
- f) Comply with AUTOSAR network management
- g) No unwanted wakeup in presence of interference noise
- h) Applicable for device supporting any speed-grade of Single Twisted Pair Ethernet Transceiver

2 TERMS AND DEFINITIONS

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/


3 WAKEUP/SLEEP ELECTRICAL INTERFACE

PHYs supporting wakeup and sleep signaling over dedicated I/O pins should follow the following guidelines. Sleep/wakeup commands are not part of the xMII interface.

Table 1 below shows examples of pins typically associated with wakeup and sleep functionality. Depending on the type of Ethernet device and required functionality, not all pins listed are relevant. When the pin in Table 1 is supported, the functionality and electrical characteristic defined in this section shall be implemented accordingly.

Table 1 Example of wakeup related device pins

Pin name	Direction ¹	Function	Voltage Source
INH	OUT (Wired-	Prevent external regulator from shutdown	VDD_AO
	OR)		
LOCAL_WAKE	IN	Local wake input	VDDIO ² or VDD_AO
WAKE_FWRD	OUT	Wake Output	VDDIO or VDD_AO
WAKE_IN_OUT	IN/OUT	Multiplex interface to support wake input and	VDDIO or VDD_AO
	(Wired-OR)	output over the same pin	
VDD_AO	IN	Always-on supply, available during sleep to	VBAT or other available
		power wakeup detection functionality	standby supply

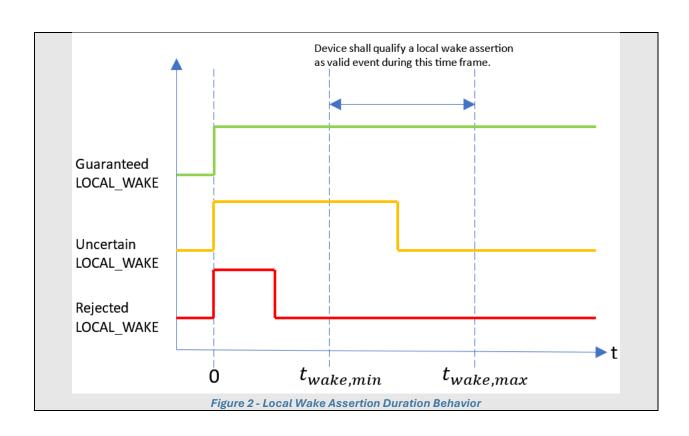
The interface shall support a local-wakeup input and may support an active-high wakeup-forwarding output. For multi PHY designs these pins can be joined. Inhibit pins should be a high-side switch, which is pulling INH high during normal operation and high-Z during low power.

RESTRICTION LEVEL: Public | 2025/07/07 | OPEN Alliance, Inc.

¹ From the perspective of the DUT

² Standard JEDEC voltage level recommended. No specific voltage level given in this spec.

The I/O voltage is left to the implementer. Note that INH is supplied by a standby supply which is available during sleep.


In some automotive use-cases a glitching wakeup source is connected to the LOCAL_WAKE pin. It is required to implement a duration detection threshold to support such applications. Local_Wake assertion (begin with a low to high transition) with a duration less than $t_{wake,min}$ shall not be detected as wakeup event and are to be ignored. Local_Wake assertion with duration more than $t_{wake,max}$ shall be guaranteed to be detected and cause a wakeup. Behavior of Local_Wake assertion with duration between $t_{wake,min}$ and $t_{wake,max}$ is undefined and implementation specific. The specific timing requirement is listed in Table 2 with behavior illustrated in Figure 2.

From this follows that a local wakeup output pulse (originating from WAKE_IN_OUT, WAKE_FWRD or another source) shall have a duration of at least $t_{wake.max}$ to be reliably detected.

In case LOCAL_WAKE is fed through the wiring harness (support for slow legacy wake-up line) it is recommended to have configurable option to increase the rejection window $t_{wake,min}$ (e.g. minimum of 10 ms).

VariableDescriptionMandatory SupportMinMaxUnit t_{wake} Valid Local_Wake assertion
qualification timeMandatory1040usUnitUnitImplementation Specific

Table 2 - Local Wake Assertion Timing Requirement

3.1 Ethernet Transceiver electrical interface type

Table 3 below indicate the different device type and the availability of different pins. While type IV and type V implementation is recommended for maximal application flexibility, the specific choice of electrical interface type is vendor specific based on target application and cost.

Table 3 Ethernet Transceiver electrical interface type

Device Type	INH	LOCAL_WAKE	WAKE_FWRD	WAKE_IN_OUT	VDD_AO
l-a	Yes	No	No	No	Yes
I-b	No	INO	INO	INO	165
II-a	Yes	No	Yes	No	Yes
II-b	No	INO	165	INO	165
III-a	Yes	Yes	No	No	Yes
III-b	No	res	INO	INO	165
IV-a	Yes	Yes	Yes	No	Yes
IV-b	No	165	165	INO	165
V-a	Yes	No	No	Yes	Yes
V-b	No	INU	INU	165	165

3.1.1 Ethernet Transceiver electrical interface type I

Type I Ethernet device has only VDD_AO and optionally physical INH pin. Example application that may utilize Ethernet transceiver belong to this category are ECU with Ethernet Transceiver where only wake up over MDI is required.

3.1.2 Ethernet Transceiver electrical interface type II

Type II Ethernet device has VDD_AO and WAKE_FWRD and optionally physical INH pin. Example application that may utilize Ethernet transceiver belong to this category are ECU requiring an Ethernet Transceiver to support wake up over MDI with capability to forward the wake event to device on the same ECU.

3.1.3 Ethernet Transceiver electrical interface type III

Type III Ethernet device has VDD_AO and LOCAL_WAKE and optionally physical INH pin. Example application that may utilize Ethernet transceiver belong to this category are ECU requiring an Ethernet Transceiver to support wake up over MDI with capability to forward wake request from a device on same ECU to a device on different ECU through the MDI.

3.1.4 Ethernet Transceiver electrical interface type IV

Type IV Ethernet device has VDD_AO, LOCAL_WAKE, WAKE_FWRD, and optionally physical INH pin. Along with type V this type of device is the most generic and feature rich and can be used to support any application. The difference between type IV and type V device is type V device has the LOCAL_WAKE and WAKE_FWRD merged into a single pin while type IV utilize separate pin.

3.1.5 Ethernet Transceiver electrical interface type V

Type V Ethernet device has VDD_AO and WAKE_IN_OUT and optionally physical INH pin. Along with type IV this type of device is the most generic and feature rich and can be used to support any application. The difference between type IV and type V device is type V device has the LOCAL_WAKE and WAKE_FWRD merged into a single pin while type IV utilize separate pin.

4 POWER CONSUMPTION

The following guidelines on the device power consumption in sleep mode target typical Ethernet products such as single and multiport PHYs and switches.

A single-port PHY product should have a quiescence current of 35µA. A multi-port PHY or switch product should have a quiescence current of 25µA plus 10µA for each port. More complex SoC products with other wakeup-capable interfaces may exceed these numbers, while still meeting this specification.

5 TIMING BEHAVIOR

The sleep and wake up process in a PHY shall fulfil the following requirements³:

Symbol	Max	Units
TWU_Forwarding	1	ms
T_PowerSupply_Stable + T_Initialization ⁴	15	ms
TWU_WakeIO	1	ms

5.1 TWU_Forwarding

For multiport devices it is possible to forward a wakeup from one physical port to another physical port. The Wake-up forwarding time (TWU_Forwarding) is the time from receiving a wakeup WakeupForward.Indication on one physical port until a WakeupFoward.Request is generated on another physical port.

5.2 T_PowerSupply_Stable and T_Initialization

When a valid wake source (WUP on MDI pin, or assertion on LOCAL_WAKE/WAKE_IN_OUT) is presented to a passive device, the device will require power up and initialization prior to indicating and servicing Wakeup.indication, for example, generating subsequent wakeup.request to propagate the wake event. The overall time from a valid wake source presented to the passive device to the Wakeup.indication is generated and serviceable, is govern by the following:

For wake source originate from MDI (WUP):

T_PowerSupply_Stable + T_Initialization + max(WUP Detection Time of particular Speed Grade)

For wake source originate from LOCAL_WAKE/WAKE_IN_OUT:

T_PowerSupply_Stable + T_Initialization + TWU_WakeIO

, where

T_Powersupply_Stable is the time from the passive device request power (INH assert high) until power supply is stable

³ For the mentioned timer values a 10 % tolerance is expected.

⁴ T_Initialization should be included in documentation to choose appropriate PMIC.

T_Initialization is the time from power supply reached stable voltage until wakeup.indication is generated and serviceable for the two different wake source:

- a) when wake source originated from WUP appeared on its MDI pin, or
- b) when wake source originated from valid LOCAL_WAKE assertion

5.3 TWU_WakeIO

The time TWU_WakeIO is defined from the valid wake pulse presented on the LOCAL_WAKE/WAKE_IN_OUT pin of a receiving device, to the time when the device qualify and accept the wake pulse as valid wake event for that particular device.

6 SERVICE PRIMITIVES AND INTERFACES

Beside the service primitives and interfaces, specified in IEEE802.3, new service primitives are provided by the 802.3 physical layer to the upper management layer. These services are needed to realize the sleep and wake-up behavior.

The wakeup and sleep control information are transferred between the PMA, PCS and SMI and physical device pins. This document does not specify an SMI address layout.

6.1 Sleep.request

The purpose of the *Sleep.request* service primitive is to shut down a link in a controlled manner, without generating unwanted link failure interrupts.

6.2 SleepForce.request

The purpose of SleepForce, request is to force the device into Sleep state bypassing the sleep handshake.

6.3 Sleep.indication

The purpose of the Sleep.indication service primitive is to indicate a received sleep request.

6.4 SleepFail.indication

The purpose of the optional SleepFail.indication service primitive is to indicate an aborted or unsuccessful sleep handshake.

6.5 SleepAbort.request

The purpose of the SleepAbort.request service primitive is to abort a received sleep request.

6.6 Wakeup.request

The purpose of the Wakeup.request service primitive is to generate a WUP or WUR command leading to a global wake-up within the Ethernet network.

6.7 Wakeup.indication

The purpose of the *Wakeup.indication* service primitive is to indicate a detected wake-up event. This includes a wakeup over a passive link, a wakeup over an active link as well as over a local wakeup pin. A *Wakeup.indication* can originate from MDI side (as WUP or WUR), from SMI side (over wakeup register) or over a physical pin (LOCAL_WAKE, WAKE_IN_OUT).

6.8 Inhibit.indication

Signals the state of an optional power supply inhibit interface.

6.9 WakeupForward.indication

(optional)

This service primitive signals that a Wakeup forwarding event has been received over wake I/O functionality or MDI.

6.10 WakeupForward.request

(optional)

This service primitive signals that a wakeup event has been forwarded to this port as a consequence of a WakeupForward.indication on another port or through the wake I/O functionality.